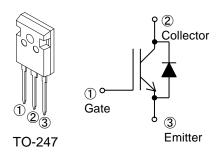


Discrete IGBT

Discret IGBT (XS-series) 1200V/40A

Features


Pb-free lead terminal ;RoHS compliant Helogen-free molding compound

Applications

Uniterruptible Power Supply,PV Power Conditioner, Inverter welding machine

■ Equivalent Circuit

Maximum ratings and characteristics

● Absolute maximum ratings at T_{vj}=25°C (unless otherwise specified)

Parameter	Symbol	Value	Unit	Remarks
Collecter-Emitter voltage	V _{CES}	1200	V	
Gate-Emitter voltage	V _{GES}	±20	V	
Transient Gate-Emitter voltage	V GES	±30] v	t _p <1μs
DC collector current	I _{C@25}	63	Α	T _C =25°C
	I _{C@100}	40	Α	T _C =100°C
Pulsed collector current	I _{CP}	160	Α	Note*1
Turn-off safe operating area	-	160	Α	$V_{CE} \le 1200 \text{ V}, T_{vi} \le 175 ^{\circ}\text{C}$
Diode forward current	I _{C@25}	63	Α	
	I _{C@100}	40	Α	
Diode pulsed current	I _{FP}	160	Α	Note*1
IGBT max. power dissipation	P _{tot_IGBT}	351	W	T _C =25°C
FWD max. power dissipation	P_{tot_FWD}	127	W	T _C =25°C
Operating junction temperature	T _{vj}	-40 ~ +175	°C	
Storage temperature	T _{stg}	-55 ~ +175	°C	

Note*1 : Pulse width limited by T_{vimax}

Discrete IGBT

lacktriangle Electrical characteristics (at T_{vj} = 25°C unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Zero-gate voltage collector current	I _{CES}	V _{CE} =1200V	T _{vj} =25°C	-	-	250	
		V _{GE} =0V	T _{vj} =175°C	-	-	2	mA
Gate-Emitter leakage current	I _{GES}	$V_{\text{CE}}=0V$ $V_{\text{GE}}=\pm 20V$		-	-	200	nA
Gate-Emitter threshold voltage	V _{GE(th)}	V _{CE} =20V I _C =40mA		4.9	5.5	6.1	V
		V _{GE} =15V I _C =40A	T _{vj} =25°C	1.3	1.6	1.9	V
Collector-Emitter saturation voltage	V _{CE(sat)}		T _{vj} =125°C	-	2.05	-	
		7 _C =40/	<i>T</i> _{vj} =175°C	-	2.15	-	
Input capacitance	C _{ies}	V_{CE} =25V V_{GE} =0V		2350	4700	7050	pF
Oputput capacitance	Coes			33	66	100	
Reverse transfer capacitance	C _{res}	f=1MHz		19	38	60	
Gate charge	Q _G	V _{CC} =600V, I _C =40A, V _{GE} =15V		125	250	380	nC
Turn-on delay time	t _{d(on)}	T _{vj} =25°C, V _{CC} =600V, I _C =40A		22	45	70	
Rise time	t _r	$V_{\rm GE}$ =15V, $R_{\rm G}$ =10 Ω Energy loss include "tail" and FWD reverse recovery.		16	32	50	ns
Turn-off delay time	$t_{d(off)}$			125	250	380	
Fall time	t _f			30	60	90	
Turn-on energy	E _{on}			0.7	1.4	2.1	
Turn-off energy	E_{off}	-		0.85	1.7	2.6	- mJ
Turn-on delay time	t _{d(on)}	T_{vj} =175°C, V_{CC} =600V, I_{C} =40A V_{GE} =15V, R_{G} =10 Ω		22	44	66	
Rise time	t _r			13	26	39]
Turn-off delay time	$t_{d(off)}$	Energy loss include "tail"		140	280	420	ns
Fall time	t _f	and FWD reverse recovery.		65	130	195	
Turn-on energy	Eon			1.1	2.2	3.3	
Turn-off energy	E _{off}	1		1.0	2.0	3.0	- mJ

 $[\]Re$ Recommended external $R_{\rm G}$ value range is from 5.1Ω to 51Ω.

FWD characteristics

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
			T _{vj} =25°C	2.5	2.9	3.3	
Forward voltage drop	V_{F}	I _F =40A	T _{vj} =125°C	-	3.2	-	V
			T _{vj} =175°C	-	3.2	-	
Diode reverse recovery time	t _{rr}	V _{CC} =600V,I _F =40A		115	230	345	ns
Diode reverse recovery charge	Q _{rr}	-d <i>i</i> _F /d <i>t</i> =300A/μs, <i>T</i> _{vj} =25°C		0.55	1.10	1.65	μC
Diode reverse recovery time	t _{rr}	V _{CC} =600V,I _F =40A		250	500	750	ns
Diode reverse recovery charge	Q _{rr}	-d <i>i</i> _F /d <i>t</i> =300A/μs, <i>T</i> _{vj} =175°C		1.15	2.30	3.45	μC

■ Thermal resistance

Parameter	Symbol	Min.	Тур.	Max.	Unit
Termal resistance, junction-anbient	$R_{th(j-a)}$	-	-	50	°C/W
Termal resistance, IGBT junction to case	$R_{\text{th(j-c)_IGBT}}$	-	-	0.427	°C/W
Termal resistance, FWD junction to case	$R_{th(j-c)_FWD}$	-	-	1.176	°C/W

Discrete IGBT

Figure 1. IGBT power dissipation vs T_c $T_{vi} \le 175 \,^{\circ}\text{C}$

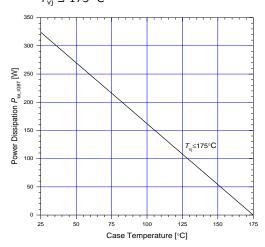


Figure 3. Typical output characteristics

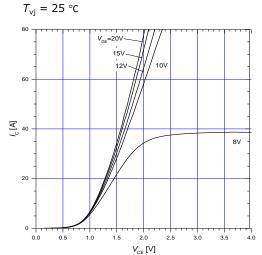


Figure 5. Typical transfer characteristics

$$V_{CE} = 20 \text{ V}$$

80

60

 $T_{q}=175^{\circ}\text{C}$

0

 $T_{q}=25^{\circ}\text{C}$
 $V_{GE}[V]$

Figure 2. DC collector current vs T_c

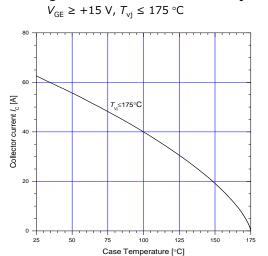


Figure 4. Typical output characteristics

$$T_{\rm vj}$$
 = 175 °C

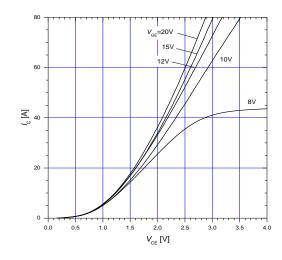
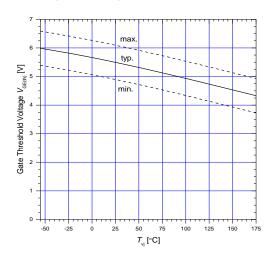



Figure 6. Gate threshold voltage

$$I_{\rm C}$$
 = 40 mA, $V_{\rm CE}$ = 20 V

Discrete IGBT

Figure 7. Typical capacitance

$$V_{\text{GE}} = 0 \text{ V}, f = 1 \text{ MHz}$$

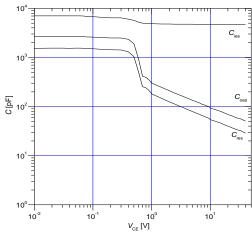


Figure 9. Typical switching times vs. I_C V_{CC} = 600 V, V_{GE} = 15 V, R_G = 10 Ω , T_{vj} = 175 °C

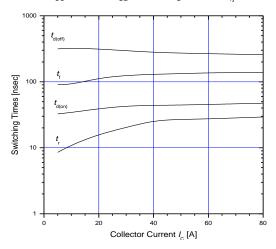


Figure 11. Typical switching losses vs. I_C V_{CC} = 600 V, V_{GE} = 15 V, R_G = 10 Ω , T_{vj} = 175 °C

Figure 8. Typical gate charge $I_{\rm C}$ = 40 A, $V_{\rm CC}$ = 600 V, $T_{\rm vi}$ = 25 °C

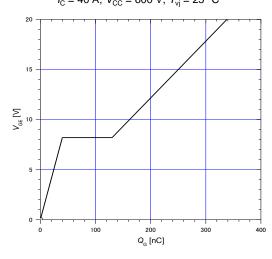


Figure 10. Typical switching times vs. R_G V_{CC} = 600 V, V_{GE} = 15 V, I_C = 40 A, T_{vj} = 175 °C

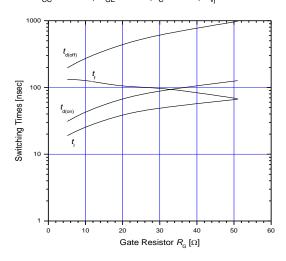
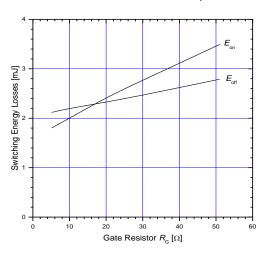



Figure 12. Typical switching losses vs. R_G $V_{CC} = 600 \text{ V}$, $V_{GE} = 15 \text{ V}$, $I_C = 40 \text{ A}$, $T_{Vj} = 175 ^{\circ}\text{C}$

Discrete IGBT

Figure 13. Typical forward characteristics of FWD

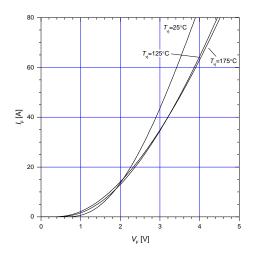


Figure 15. Typical reverse recovery loss vs. I_F V_{CC} = 600 V, V_{GE} = 15 V, R_G = 10 Ω , T_{v_i} = 175 °C

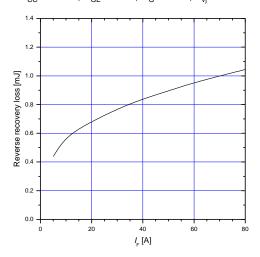


Figure 17. Transient Thermal Impedance of IGBT

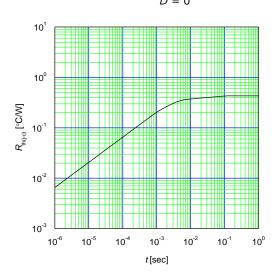


Figure 14. Typical reverse recovery characteristics vs. I_F $V_{\rm CC}$ = 600 V, $V_{\rm GE}$ = 15 V, $R_{\rm G}$ = 10 Ω , $T_{\rm vj}$ = 175 °C

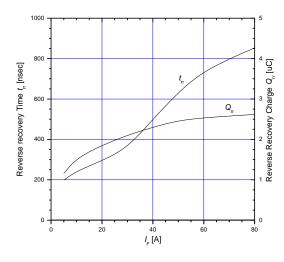


Figure 16. Reverse biased safe operating area $V_{GE} = 15 \text{ V} / 0 \text{ V}$, $R_G = 10 \Omega$, $T_{Vi} \le 175 \text{ °C}$

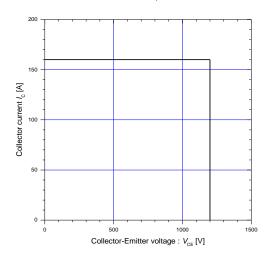
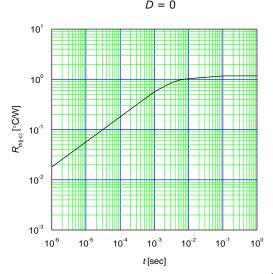
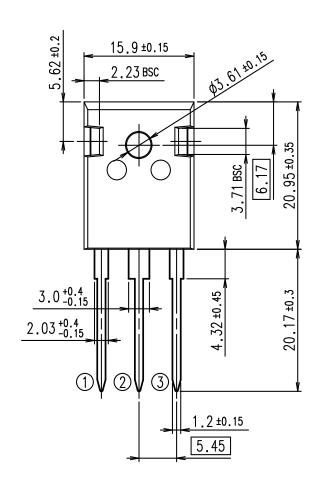
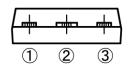



Figure 18. Transient Thermal Impedance of FWD




9502b 2022/01

Discrete IGBT

Outline drawings,mm

Outview: TO-247 package

Connection

- 1) Gate
- 2 Collector
- 3 Emitter

Dimensions are in millimeters.

IGBT Modules

Warnings

- 1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of 1/2022. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.
- 2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
- 3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
- 4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
- ·Computers ·OA equipment ·Communications equipment (terminal devices) ·Measurement equipment
- · Machine tools · Audiovisual equipment · Electrical home appliances · Personal equipment · Industrial robots etc.
- 5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 - · Transportation equipment (mounted on cars and ships) · Trunk communications equipment
 - ·Traffic-signal control equipment ·Gas leakage detectors with an auto-shut-off feature
 - · Emergency equipment for responding to disasters and anti-burglary devices · Safety devices · Medical equipment
- 6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 - · Space equipment · Aeronautic equipment · Nuclear control equipment · Submarine repeater equipment
- 7. Copyright (c)1996-2022 by Fuji Electric Co., Ltd. All rights reserved.

 No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.
- 8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.