

PORTABLE TYPE ULTRASONIC FLOWMETER

Basic Instruction Manual

with printer

Detector: Transit time detector

(Туре	
Small		FSDP2
Medium		FSDP1
Large		FSDP0

Contents

1.	Preparation for measurement	2
2.	From "Input of piping specifications" to	
	"Mounting of sensor"	5
3.	How to register and read out set data	9
4.	Measurement of fluid whose sound velocity	
	is unknown 1	1
5.	Printing mode selection (optional) 14	4
6.	Data logger setting 1	7
7.	How to start and stop totalizing of flow rate 2	0
8.	Analog input/output setting 2	1

Detector: Flow velocity distribution measurement detector

Οι	iter appearance	New type	Old type
Small diameter		FSSD1	FSD22
Small type		FSSD3	FSD12
Extendable type	<u>k</u>	FSSC	_
High temp.		FSSH	FSD32
Large diameter	() ()	FSSE	FSD51

Fuji Electric Co., Ltd.

Thank you for purchasing our product. This Basic Instruction Manual outlines the proper operation procedure. Please take a few moments to read this manual thoroughly before use and read the Instruction Manual on the enclosed CD as well.

1. Does the bore diameter of pipe being measured correspond with the sensor type?

Transit time detector						
Detector	New type	Old type	Diameter	Temp. range		
			(mm)	(°C)		
Small diameter	FSSD1	FSD22	13 to 100	-40 to 100		
	FSSD3	—	13 to 300	-40 to 100		
Small type	_	FSD12	50 to 400	-40 to 120		
Extendable type	FSSC	_	50 to 1200	-40 to 120		
Large diameter	FSSH	FSD32	50 to 400	-40 to 200		
High temp.	FSSE	FSD51	200 to 6000	-40 to 80		

Flow velocity distribution measurement detector					
Detector Type Diameter Temp. range					
(mm) (°C)					
Small	FSDP2	40 to 200	-40 to 100		
Medium	FSDP1	100 to 400	-40 to 80		
Large	FSDP0	200 to 1000	-40 to 80		

Note:

Table of flow transmitter and old/new detector combination

Flowmeter	Detecter (New type)				Detecter (Old type)				
Revison No.	FSSD1	FSSD3	FSSC	FSSH	FSSE	E FSD22 FSD12 FSD32 FSD			FSD51
FSC-1	0	0	×	0	0	0	0	0	0
FSC-2 and after	0	0	0	0	0	0	0	0	0

- O: Applicable
- ×: Non Applicable.

Transmitter software is updated.

Software updates are available on our website.

http://www.fujielectric.com/products/instruments/products/flow_ultra/FSC_FLD_FSD.html

- 2. Is there enough straight pipe portion on the upstream and downstream side of the sensor mounting position?
 - The place where a strait pipe portion is 10D or more on the upstream side and 5D or more on the downstream side.
 - The place where no factors to disturb the flow (pumps or valves) exists within about 30D on the upstream side.
- 3. Is the pipe setup (such as, outer diameter, material, thickness) correct?
 - Sensor mounting dimension is not calculated correctly. Therefore, errors, such as "Window scanning "(waveform out of the receiving range) and "No received signal" occur.
- 4. Is the sensor mounted correctly?
 - Apply sufficient silicone grease over the whole transmitting surface of the sensor. Otherwise, errors, such as "Received signal is unstable " and "No received signal" occur.
 - If the connection between the upstream side and the downstream side are reversed, flow rate is displayed with is minus "-".

5. Did you perform the zero adjustment before start measurement? <See page 4>

• Fill the pipe with the fluid being measured, and perform "ZERO ADJUSTMENT" manually in a situation where the flow is stopped. Otherwise, measurement can not be performed. (If you can not stop the flow, "CLEAR" the adjustment. However, it reduces the accuracy a bit.)

6. Are two or more signal indicators displayed at the top right of the measurement screen? <See page 7>

- If only one or less indicator is displayed, raise the transmission voltage level.
- 7. Is the range setting of analog output correct? <See page 21>
 - Even if the analog output is not used, make a proper range setting. Otherwise, "E4: RANGE OVER" occurs. (Proper setting: MENU→SYSTEM→ANALOG INPUT/OUTPUT→"NOT USED") Factory setting is "NOT USED".

☆ Now preparation for measurement is complete. Make settings of TOTALIZER, DATA LOGGER, and PRINTER if needed.

Is correct flow rate displayed? If an error message appears, move the cursor to "Status display" on the measurement screen press the "ENT" key.

Errors, causes and actions are displayed. Take actions according to the display.

1. Preparation for measurement

(1) Measurement procedure

(2) Perform zero adjustment in a situation where the flow is stopped.

* "SET ZERO" should be performed in a situation where the flow is stopped, and "CLEAR" cancels adjustment.

(3) Adjustment of indication fluctuation and CUT OFF

2. From "Input of piping specifications" to "Mounting of sensor"

14) DISPLAY OF MOUNTING DIMENSIONS

After you finish the site setting on establish site screen, "Decision" is reversed from white to blue by pressing (ENT) key.

Display the message "After sensor installation, please adjust "Zero point", turn back to "SITE SETUP" screen. At the last line the "SENSOR SPACING" value is display. Install the sensor according to the mounting dimension is as displayed on the last time.

Reference "Data of various fluids"

Name of liquid	Т°С	ρg/cm³	Vm/s
Acetone	20	0.7905	1190
Aniline	20	1.0216	1659
Alcohol	20	0.7893	1168
Ether	20	0.7135	1006
Ethylene glycol	20	1.1131	1666
n-octane	20	0.7021	1192
o-xylene	20	0.871	1360
Chloroform	20	1.4870	1001
Chlorobenzene	20	1.1042	1289
Glycerin	20	1.2613	1923
Acetic acid	20	1.0495	1159
Methyl acetate	20	0.928	1181
Ethyl acetate	20	0.900	1164
Cyclohexane	20	0.779	1284
Dithionic acid	20	1.033	1389
Heavy water	20	1.1053	1388
Carbon tetrachloride	20	1.5942	938
Mercury	20	13.5955	1451
Nitrobenzene	20	1.207	1473
Carbon disulfide	20	1.2634	1158
Chloroform	20	2.8904	931
n-propyl alcohol	20	0.8045	1225
n-pentane	20	0.6260	1032
n-hexane	20	0.654	1083
Light oil	25	0.81	1324
Transformer oil	32.5	0.859	1425
Spindle oil	32	0.905	1342
Petroleum	34	0.825	1295
Gasoline	34	0.803	1250
Water	13.5	1.	1460
Sea water (salinity: 3.5%)	16	1.	1510

* Sound velocity per piping material

Material	Vm/s
Steel	3000
Ductile cast iron	3000
Cast iron	2604
Stainless steel	3141
Copper	2260
Lead	2170
Aluminum	3080
Brass	2050
Vinylchloride	2307
Acrylics	2644
FRP	2505
Mortar	3000
Tar epoxy	2505
Polyethylene	1900
Teflon	1240
Rubber	1510
Ryrex glass	3280

* Dynamic viscosity coefficient of various fluids

Name of liquid	Т°С	ρg/cm ³	Vm/s	v (×10⁻⁶m²/s)
Acetone	20	0.7905	1190	0.407
Aniline	20	1.0216	1659	1.762
Ether	20	0.7135	1006	0.336
Ethylene glycol	20	1.1131	1666	21.112
Chloroform	20	1.4870	1001	0.383
Glycerin	20	1.2613	1923	1188.5
Acetic acid	20	1.0495	1159	1.162
Methyl acetate	20	0.928	1181	0.411
Ethyl acetate	20	0.900	1164	0.499
Heavy water	20	1.1053	1388	1.129
Carbon tetrachloride	20	1.5942	938	0.608
Mercury	20	13.5955	1451	0.114
Nitrobenzene	20	1.207	1473	1.665
Carbon disulfide	20	1.2634	1158	0.290
n-pentane	20	0.6260	1032	0.366
n-hexane	20	0.654	1083	0.489
Spindle oil	32	0.905	1324	15.7
Gasoline	34	0.803	1250	0.4 to 0.5
Water	13.5	1.	1460	1.004(20°C)

3. How to register and read out set data

(1) How to read out set data from SITE MEMORY

- (2) How to register site data to the memory
 - * SITE REGISTRATION should be performed before setting of "2. From [Input of piping specifications] to [Mounting of sensor]".

(3) How to delete set data from SITE MEMORY

4. Measurement of fluid which sound velocity is unknown

1) Select "SITE SETUP" from "MENU". 2) Select "PROCESS SETTING".

3) Set each item.

Refer to the section "Input procedure of PIPE PARAMETER" for details.

4) Measurement of unknown fluid

Set the sound velocity and dynamic viscosity coefficient of approximate fluid (soluble fluid is water) provisionally. (Refer to "Data of various fluids" in page 8)

If sound velocity is unclear, set the sound velocity provisionally within the range between 500 to 2500m/s in a staircase pattern.

 $2500(\times 0.84) \rightarrow 2100(\times 0.84)$... in the same way $\rightarrow 1764 \rightarrow 1482 \rightarrow 1245 \rightarrow 1046 \rightarrow 878 \rightarrow 738 \rightarrow 620 \rightarrow 521 \text{ m/s}$

For example, when acetic acid concentration is 60%, enter the sound velocity (1159m/s) and dynamic velocity coefficient (1.162 (\times 10⁻⁶m²/s)) according to the "Data of various fluids" in page 8.

5) Sensor mounting

After PIPE PARAMETER input, check dimension and then mount a sensor. Φ50: 1mm difference is approx. 1% error Φ500:1mm difference is approx. 0.1% error. 6) Check of receiving signal strength and status display

If the following errors occur, repeat the procedure 4) and 5) until "NORMAL" is displayed.

- · No received signal
- \cdot Window scanning
- Received signal is over flow is displayed,

7) Check of fluid sound velocity

8) Set the "S.V." and "VISCOSITY" of unknown fluid

Enter the FLUID S.V. written down in the procedure 7) to the FLUID V.S. in the PROCESS SETTING screen. Set the dynamic viscosity coefficient of unknown fluid and approximate fluid according to "Data of various fluids" in page 8. (Note that it is not an actually-measured dynamic viscosity coefficient of fluid) 9) Perform zero adjustment in a situation where the flow is stopped.

5. Printing mode selection (optional)

1: Printing of text \rightarrow Prints text data for selected KIND in industrial value.

2: Printing of graph \rightarrow Print data for selected KIND in graph.

1) Check the box of desired item. 2) Set the min/max value.

3) Set a TIMER MODE

3: Printing of list \rightarrow Print a selected list.

Select a "LIST KIND" and press START.

6. Data logger setting

Logging (recording) function setting ... This function allows you to display or print out saved data after measurement.

Recording capacity ... SD card (256MB): data for approx. a year can be saved, if saving cycle is 30sec. and data being saved is 14 types.

(1) Logging of measured data

(2) Logged data checking and printing

7. How to start and stop totalizing of flow rate

8. Analog input/output setting

(4) Range setting

(6) Output unit setting

Fuji Electric Co., Ltd.

Instrumentation & Sensors Planning Dept. 1, Fuji-machi, Hino-city, Tokyo 191-8502, Japan http://www.fujielectric.com Phone: +81-42-514-8930 Fax: +81-42-583-8275 http://www.fujielectric.com/products/instruments/