

NDIR GAS ANALYZER (3-COMPONENT ANALYZER)

DATA SHEET

This product is the replacement of our gas analyzer <model: ZRG>

This gas analyzer (ZKJ7) is capable of measuring the concentrations of NO, SO₂, CO₂, CO, CH₄ and O₂ components in sample gas.

NO, SO₂, CO₂, CO, CH₄ are measured by non-dispersion infrared method (NDIR), while O₂ is measured by externalmount type zirconia method sensor. A maximum of three components including O₂ are simultaneously measurable.

The mass flow type twin detector of high sensitivity and reliability adopted in the infrared ray method detection block makes the measurement hardly affected by interfering components.

In addition, a microprocessor is built in and a large-size liquid crystal display is equipped for easier operation, higher accuracy and more functions.

Optimum as an analyzer unit of gas measurement system for combustion exhaust gas from refuse incinerator and boiler, or gas from different industrial furnaces.

Combination of this product and model sampling system (ZSU) is satisfied authentication test by measurement act.

FEATURES

1. Measure three components including $\mathsf{O}_2\,\mathsf{simultaneously}$ and continuously

Simultaneously and continuously measures up to three components out of NO, SO_2 , CO_2 , CO, CH_4 , plus O_2 , or up to totally three components.

- 2. Hardly affected by interference by other gases The mass flow type twin detector of high sensitivity and reliability adopted makes the measurement hardly affected by interfering components of other gas, ensuring a stable operation.
- 3. Equipped with abundant functions

 O_2 conversion, average value computation, automatic calibration, one touch calibration, upper/lower limit alarm, remote measurement range changeover, range identification signal output, etc. incorporated can configure applications to match particular uses.

 Easy-to-see large LCD unit The large LCD unit adopted allows observing easily the indication of all measured components and computation values.

The interactive operation facilitates setting.

 Maximum range ratio is 1:25 Measuring ranges are changeable.

6. Drift +/-1% FS/week (more than 0 to 200ppm range)

SPECIFICATIONS

Standard Specifications

Principle of measurement:

NO, SO₂, CO₂, CO, CH₄;

- Non-dispersion infrared-ray absorption method
- Single light source and double beams (double-beam system)
- O₂ ; Exclusive zirconia O₂ sensor (externally installed). Model: ZFK7

Measurable gas components and measuring range:

	Minimum range	Maximam range		
NO	0 – 100ppm	0 – 5000ppm		
SO ₂	0 – 100ppm	0 – 10vol%		
CO ₂	0 – 100ppm	0 – 100vol%		
CO	0 – 100ppm	0 – 100vol%		
CH₄	0 – 200ppm	0 – 100vol%		
O₂ (External Zirconia)	0 – 10vol%	0 – 25vol%		

• Max. 3 components measurement including O₂.

- Measuring range ratio $\leq 1:5 (O_2 \text{ sensor})$
 - ≤ 1:25

(except for O_2 sensor)

• Measuring ranges are changeable between the specified minimum and maximum range Settable one range or two ranges

*For measurable components and possible combinations of measuring ranges, refer to Tables 1-(1) to (3).

🛚 Fuji Electric Co., Ltd. 🖿

EDS3-141d Date Sep. 29, 2017

ZKJ7

Measured value indication:

Digital indication in 4 digits

(LCD with back light)

- Instantaneous value of each component
- Instantaneous value after O₂ conversion (only in NO, SO₂, CO sensor with O₂ sensor)
- Average value after O₂ conversion (only in NO, SO₂, CO sensor with O₂ sensor)

Analog output signals:

4 to 20mA DC or 0 to 1V DC, non-isolated output ; 7 points max. Analog output corresponds to measured value indication in 1:1. max.load550 Ω . for 4 to 20 mA DC min.load 100k Ω . for 0 to 1V DC * Refer to Table 2, for the channel No.

of displayed values and analog output signals.

Analog input signal:

- For signal input from externally installed O_2 sensor.
- Signal requirement;
- (1) Signal from Fuji's Zirconia O₂ sensor (TYPE: ZFK7)
- (2) 0 to 1V DC from an $O_{\rm 2}$ sensor Input section is not isolated.

(Depend on O_2 input signal, measured concentration indication and O_2 conversion.)

Relay contact output:

Relay contact ou	utput:	
	1a contact (250V AC/2A, resistive load) Instrument error, calibration error,	I
	range identification, auto calibration	
	status, pump ON/OFF.	
	solenoid valve drive signal for auto	
	calibration, auto calibration end.	
	1c contact (250V AC/2A, resistive load	
	selectable 6 outputs)	
	High/Low limit alarm contact output.	I
	* All relay contacts are isolated mutu-	
	ally and from the internal circuit.	
Contact input:	No-voltage contact (ON/0V, OFF/5V	
	DC, 5mA flowing at ON)	
	* For ZRG (ON/5V, OFF/0V)	
	Remote range switch, auto calibra-	
	tion remote start, remote holding,	
	average value reset.	
	Isolated from the internal circuit with	
	photocoupler. Contact inputs are not	Ran
	isolated from one another.	
Power supply:	Voltage rating ; 100V to 240V AC	
	Allowable range; 85V to 264V AC	
	Frequency ; 50Hz/60Hz	
	Power consumption; 250VA max.	
Operating condi		
	Ambient temperature; -5°C to 45°C	
	Ambient humidity ; 90% RH max.,	Aut
0	non-condensing	
Storage condition		
	Ambient temperature; -20°C to 60°C	
	Ambient humidity ; 95% RH max.,	
Dimensions (H >	non-condensing	
Dimensions (H)	Analyzer main unit;	
	835 x 218 x 202mm	
Mass:	Approx. 16 kg	
Finish color:	Front panel; Off-white (Munsell 10Y7.5/0.5	
	or equivalent)	
	or equivalent,	

Enclosure:	Steel casing, for indoor use
Material of gas-c	contacting parts:
	Gas inlet/outlet; Teflon
	Sample cell; SUS304, chloroprene rubber
	Infrared-ray transmitting window; CaF2
	O ₂ sensor sample cell : SUS316
	Internal piping; Toaron, Teflon
Gas inlet/outlet:	Rc ¹ /4 or ø6 hose end
Purge gas flow r	ate:1L/min (when required)
Standard Fui	nctions
Output signal ho	olding:
	Output signals are held during manual

Output signal hold	ling:
a h T b v. It	Output signals are held during manual nd auto calibrations by activation of olding (turning "ON" its setting). he values to be held are the ones just efore start calibration mode or setting alue. : is selectable. indication of instantaneous values will
	ot be held.
Remote output hol	-
o re H n	Output signal is held at the latest value r setting value by short-circuiting the emote output holding input terminals. lolding is maintained while the termi- als are short-circuited. Indication of instantaneous values will not be held.
Switch ranges :	
a s Manual: A Auto: A ra ir	he switch ranges is available in manu- l, auto, and remote modes. Only pre- et switch method is effective. Illows range to switch by key operation. Illows range to switch from low to high ange when 90%FS or more is available in the low range.
lo a Remote: N a A s	Ilows range to switch from high to ow range when 80%FS or less is avail- ble in the low range. Io-voltage contact input (for measur- ble components) Ilows range to switch via an external ignal when remote range switch input a received.
V e tl s	When the contact input terminals for ach component are short-circuited, he first range is selected, and it is witched to the second range when the erminals are open.
Range identificatio	
T fi T c tł	he present measuring range is identi- ed by a contact signal. he contact output terminals for each omponent are short-circuited when he first range is selected, and when he second range is selected, the ter- hinals are open.
	uto calibration is carried out periodi-
c V c	ally at the preset cycle. When a standard gas cylinder for alibration and a solenoid valve for pening/closing the gas flow line are

opening/closing the gas flow line are prepared externally by the customer, calibration will be carried out with the solenoid valve drive contacts for zero calibration and each span calibration turned on/off sequentially at the set auto calibration timing.

Auto calibration cycle setting:

Auto calibration cycle is set.

Setting is variable within 1 to 99 hours (in increments of 1 hour) or 1 to 40 days (in increments of 1 day).

Gas flow time setting:

The time for flowing each calibration gas in auto calibration is set.

Settable within 60 to 900 seconds (in increments of 1 second)

Auto calibration remote start:

Auto calibration is carried out only once according to an external input signal. Calibration sequence is settable in the same way as the general auto calibration.

Auto calibration is started by opening the auto calibration remote start input terminals after short-circuiting for 1.5 seconds or longer.

Auto zero calibration:

Auto zero calibration is carried out periodically at the preset cycle.

This cycle is independent on "Auto calibradion" cycle.

When zero calibration gas and solenoid valve for opening/closing the calibration gas flow line are prepared externally by the customer, zero calibration will be carried out with the solenoid valve drive contact for zero calibration turned on/off at the set auto zero calibration timing.

Auto zero calibration cycle setting:

Auto zero calibration cycle is set. Setting is variable within 1 to 99 hours (in increments of 1 hour) or Setting is variable within 1 to 40 days (in increments of 1 day)

Gas flow time setting:

The timing for flowing zero gas in auto zero calibration is set. Settable 60 to 900 seconds (in increments of 1 second)

High/Low limit alarm:

Alarm contact output turns on when measurement value reach to the preset high or low limit alarm value. Contacts close when the channel value of each channel becomes larger than the high alarm limit value or smaller than the low alarm limit value.

Instrument error contact output:

Contacts close at occurrence of analyzer error No. 1, 3 or 10.

Calibration error contact output:

Contacts close at occurrence of manual or auto calibration error (any of errors No. 4 to 9).

Auto calibration status contact outputs:

Contacts close during auto calibration.

Pump ON/OFF contact output:

During measurement, this contact close. While calibration gas is flowing, this contact open. This contact is connected in power supply of pump, and stop the sample gas while calibration gas flowing.

Average value reset:

Average value after O_2 conversion is started under preset condition by opening the average value reset input terminals after short-circuiting for 1.5 seconds or longer.

Reset is carried out by short-circuiting. Restart is carried out by opening.

Auto calibration interlocking function:

When these two products are lined up and installed, output the auto calibration synchronized signal to second product.

Contact output during auto calibration: While auto calibration is carried out, this contact is closed.

Auto calibration end contact output: Contact is closed for 1.5 seconds after finishing to flow the gas of auto calibration.

Optional Functions

O₂ conversion: Conversion of measured NO, SO₂ and CO gas concentrations into values at standard O₂ concentration

Conversion formula:
$$C = \frac{21-On}{21-Os} \times Cs$$

- C : Sample gas concentration after ${\rm O}_{\rm 2}$ conversion
- Cs : Measured concentration of sample gas
- Os : Measured O_2 concentration (Limit settable, 1 to 20% O_2)
- On: Standard O_2 concentration (value changeable by setting; 0 to $19\% O_2$)

Average value after O₂ conversion :

The result of O_2 conversion or instantaneous O_2 value can be outputted as an average value in the preset period of time.

Used for averaging is the moving average method in which sampling is carried out at intervals of 30 seconds.

(Output is updated every 30 seconds. It is the average value in the determined period of time just before the latest updating.)

Averaging time is settable within 1 to 59 minutes (in increments of 1 minute) or 1 to 4 hours (in increments of 1 hour).

Communication function:

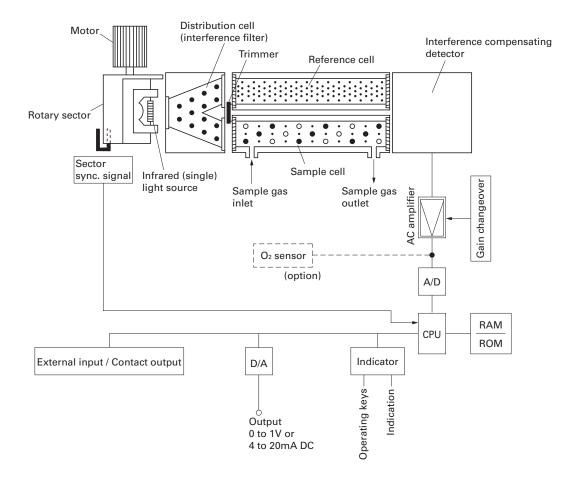
RS-232C (9pins D-sub)

- Half-duplex bit serial
- Start-stop synchronization
- Modbus[™] protcol

Contents: Read/Wright parameters Read measurement concen-

- tration and instrument status Remark: When connecting via RS-485
 - interface, a RS-232C ↔ RS-485 converter should be used.

ZKJ7

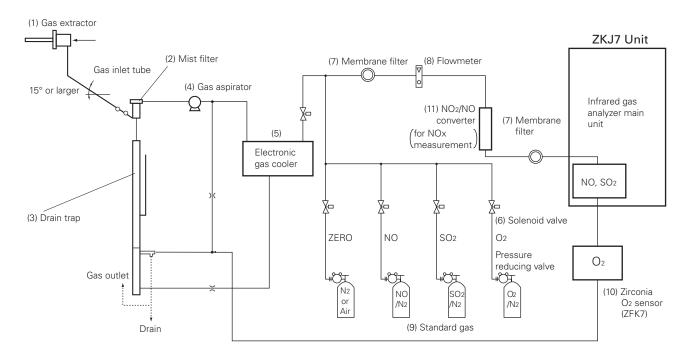

Performance	9
Repeatability	 :±0.5% of full scale
Linearity	$\pm 1\%$ of full scale
Zero drift	: ±1% of full scale/week
	(±2% of full scale/week; range be
	tween 0 to 100ppm and 0 to 200ppm)
Span drift	: ±2% of full scale/week
Response time	:
(for 90% FS resp	
	15 sec electrical response
	Within 60 seconds including replace- ment time of sampling gas (when gas
	flow rate is 0.5L/min)
	Gas replacement time depends on the
	number of measuring components and
	measuring range
Standard Re	quirements for Sample Gas
Flow rate	: 0.5L / min ±0.2L / min
Temperature	: 0 to 50°C
Pressure	: 10 kPa or less (Gas outlet side should be open to the atmospheric air.)
Dust	: $100\mu g/Nm^3$ or less in particle size of
Dust	1µm or less
Mist	: Unallowable
Moisture	: Below a level where saturation occurs
	at 2°C (condensation unallowable).
Corrosive comp	
	1 ppm or less
Standard gas fo	
	Zero gas ; Dry N_2
	Span gas ; Each sample gas having concentration 90 to 100%
	of its measuring component
	range (recommended).
	Gas beyond concentration
	100%FS is unusable.
	In case a zirconia O ₂ analyzer is in-
	stalled externally and calibration is car-
	ried out on the same calibration gas
	line:
	Zero gas ; Dry air or atmospheric air (provided without CO ₂ sen-
	sor)
	Span gas ; Except O ₂ measurement,
	each sample gas having
	concentration 90 to 100%
	of its measuring range. For
	O_2 sensor, O_2 gas of 1 to
	2vol%.

Installation Requirements

- Indoor use. (Select a place where the equipment does not receive direct sunshine, draft/rain or radiation from hot substances. If such a place cannot be found, a roof or cover should be prepared for protection.)
- Avoide a place where receives heavy vibration
- Select a place where atmospheric air is clean

	ZRG	ZKJ7
Contact input	DC5V	No-voltage contact
Zirconia O2 analyzer	ZFK3, 4	ZFK7
Average value	Calculation is always carried out even during holding.	Calculation is suspended during holding
Calibration error contact	Auto calibration status error	Calibration status error (Auto/manual)

Principle diagram of NDIR type measurement (For NO, SO_2 , CO_2 , CO_2 , CO_3)



Example configuration of gas sampling system

The following illustrates a typical system configuration for five component gas measurement for monitoring combustion exhaust gas from boiler, refuse incinerator, etc.

Contact FUJI ELECTRIC for system configuration matching the particular use or further information.

In the case infrared gas analyzer (Model: ZRG) is replaced, Ziruconia O2 sensor should also be replaced.

Functions of Individual Components

- (1) Gas extractor: Gas extractor with a heating type stainless steel filter of standard mesh 40µm
- (2) Mist filter: For separation of drain and removal of dust and mist
- (3) Safety drain trap:

Prevention of drain from being sucked and composite operation of constantpressure bubbler

- (4) Gas aspirator: For aspiration of sample gas (sample gas flow rate approx. 2L/min)
- (5) Electronic gas cooler:

Dries the moisture in sample gas to a dew point of approx. 3°C.

- (6) Solenoid valve: Used for introducing calibration gas.
- (7) Membrane filter:

PTFE filter used to eliminate fine dust particles and permit monitoring of dust adhering condition on the front panel of the gas analyzer.

(8) Flowmeter:	Adjusts and monitors the flow rate of sample gas.
(9) Standard gas	Reference gas used for calibrating zero and span of the analyzer.
(10)Zirconia O ₂ s	sensor:
(11)Converter:	External zirconia oxygen sensor used for measuring the oxygen concentration (0 to 25%) in sample gas. In the case ZFK3-4 is used, ZFK7 should also be replaced. Added to NOx analyzer. A special catalyst material for efficient conversion of NO ₂ gas to NO is used.
*(Note)	For each gas sampling device, refer to the sepa- rate Data Sheet for each gas sampling device.

CODE SYMBOLS

Digit	Descr	intion	note	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ← Digit	
4	Description Custom specifications>		1010		,46
	Replecement of ZRG type	2		7	
5	<measurable (<="" component="" td=""><td>NO, SO₂, CO₂, CO, CH₄)></td><td></td><td></td><td></td></measurable>	NO, SO ₂ , CO ₂ , CO, CH ₄)>			
	1st component	2nd component			
	NO			P	
	SO ₂				
	CO ₂				
	CO			BB	
	CH4				
	NO CO2	SO ₂ CO		F	
	Others	CO			
6	<measurable component<="" td=""><td>$(\Omega_2)>$</td><td>note 1</td><td></td><td></td></measurable>	$(\Omega_2)>$	note 1		
Ŭ	None				
	External zirconia type O2	sensor (ZFK7 type)			
	External O2 analyzer			B	
	without external indication		note 2, 8		
	(input the signal for O ₂ c	onversion externally)			
	<gas inlet="" outlet=""></gas>				
	Rc1/4 (with purging inlet)				
	Teflon $\phi 6$ (none purging <revision code=""></revision>	iniet)			
8 9	-			5 Y	
	- <indication></indication>		+		
	In Japanese				
	In English			Ĕ	
11	<measuring range=""> 1st c</measuring>	omponent.1st range	note 3		
	0-100ppm			B	
	0-200ppm				
	0-250ppm				
	0-500ppm				
	0-1000ppm			F	
	0-2000ppm			G	
	0-5000ppm 0-1%				
	0-2%			K K	
	0-5%				
	0-10%				
	0-20%			N	
	0-50%			P : : : : : : : : : : : : : : : : : : :	
	0-100%			R	
	Others			Z	
12	<measuring range=""> 1st c</measuring>	omponent.2nd range	note 3		
	None			Y	
	0-200ppm				
	0-250ppm 0-500ppm				
	0-1000ppm				
	0-2000ppm			G	
	0-5000ppm				
	0-1%			j	
	0-2%			κ	
	0-5%				
	0-10%			M	
	0-20%			N	
	0-50%				
	0-100%				
13	Others <measuring range=""> 2nd o</measuring>	component 1st renge	note 3	Z	
13	None	somponent, ist fange	note 3	Y	
	0-100ppm			B	
	0-200ppm				
	0-250ppm				
	0-500ppm				
	0-1000ppm			E STATUTE STAT	
	0-2000ppm			G	
, /	0-5000ppm				
1.				J	
	0-1%				
	0-2%			K	
	0-2% 0-5%				
	0-2% 0-5% 0-10%				
	0-2% 0-5% 0-10% 0-20%			M	
	0-2% 0-5% 0-10%				

		_	<u>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23</u> - Digit No.
Digit	Description	note	ZKJ7 5-Y of code
14	<measuring range=""> 2nd component.2nd range</measuring>	note 3	
	None		$ \mathbf{Y} $
	0-200ppm		
	0-250ppm		
	0-500ppm		
	0-1000ppm		F : : : : : : : : :
	0-2000ppm		G
	0-5000ppm		
	0-1%		
	0-2%		$ \mathbf{\kappa} $
	0-5%		
	0-10%		M
	0-20%		$ \mathbf{N} $
	0-50%		P
	0-100%		
	Others		Z
15	-		YY
16			
17	-		Y Y
18			
19	<o2 range="" sensor=""></o2>		
20	None	note 4,8	YY
	0-10%/0-25%		MV
	0-25%		V Y
	Others		Z Z
21	<output></output>		
	4 to 20mA DC		
	0 to 1V DC		B
	4 to 20mA DC + communication function		A B C D
	0 to 1V DC + communication function		
22	<o<sub>2 conversion></o<sub>	note 5	
	None	note 6	Y
	With O ₂ conversion output		A
23	<ajustment></ajustment>		
	For combustion exhaust gas		B
	Others	note 7	Z

Note 1 a) when "B" is specified at the 6th digit, O₂ sensor signal should be set as 0-1VDC linear corresponding to full scale. b) External zirconia O₂ sensor and external O₂ analyzer are not included in the scope of supply.

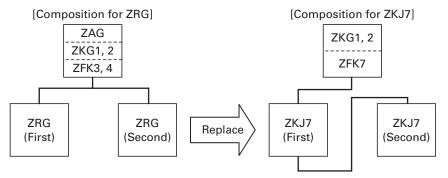
Note 2 When two products are lined up and installed, please refer to the corresponding table for measured value to specify the digit for second product. (Please also refer to note 9)

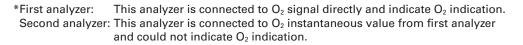
Note 3 Please refer to the appendix, for possible combination of measuring components and range in the data sheet.

Note 4 When "Y", "D" is specified at the 6th digit, Only "YY" should be selected.

Note 5 Only measuring value of NO, SO₂, CO are calculated as O₂ calculation, O₂ converted average value are outputted at the same time.

Note 6 When "Y" is specified at the 6th digit, Only "Y" should be selected.


Note 7 When "Z" is specified at the 23rd digit, gas composition table of actual measured gas has to be sent to Fuji with your purchase order.


Note 8 Precaution to observe when performing installation of two analyzers with external O2 analyzer.

• When two ZKJ7 are lined up side by side and installed with external O₂ analyzer, Be sure to observe connection of external O₂ analyzer shown following diagram on the right side. (with converted value/converted average value)

In this case O_2 indication can not be conducted with second ZKJ7 (due to limitation of measurement)

Please refer to "Connecting method/analog output component" for connection to the terminal.

- O2 range is 0-25% or 0-10%/25%.
- With these connection component for second analyzer should be NO sensor, SO₂ sensor or NO/SO₂ sensor. Please refer to the "correspondence table for measured value" "Code symbols" for details.
- When ZRG is replaced, two analyzers should be replaced at the same time.

Table 1. Measurable component and range – availability check table –

(*) Range code shows settable combination of the maximum range rate.

(1) Single component analyzer (NO, SO₂, CO₂, CO, CH₄)

 $\frac{1}{12}$: NO Measuring range \Box : SO₂ Measuring range \odot : CO₂ Measuring range

 \bigcirc : CO Measuring range $\hfill \bigtriangleup$: CH4 Measuring range

\square	2st range	С	D	E	F	G	Н	J	K	L	M	N	Р	R
		0 ~	0~	0~	0~	0~	0 ~	0 ~ 1%	0 ~ 2%	0 ~ 5%	0 ~ 10%	0 ~ 20%	0 ~ 50%	0 ~ 100%
1st r	ange	200ppm	250ppm	500ppm	1000ppm	2000ppm	5000ppm	0~1/0	0~2/0	0~570	0~10/0	0~2070	0~ 3070	0~10070
В	0 ~ 100ppm	☆□00	☆□00	☆□00	☆□00	☆□00								
С	0 ~ 200ppm		☆□00△	☆□00△	☆□00△	☆□00△	☆□00△							
D	0 ~ 250ppm			☆□00△	☆□00△	☆□00△	☆□00△							
Е	0 ~ 500ppm				☆□00△	☆□00△	☆□00△	\Box						
F	0 ~ 1000ppm					☆□00△	☆□00△	$\Box 00 \Delta$						
G	0 ~ 2000ppm						☆□00△	\Box						
Н	0 ~ 5000ppm							\Box						
J	0~1%											00Δ		
К	0 ~ 2%											$\bigcirc \bigcirc \triangle$	00Δ	
L	0~5%											OO	OOA	00Δ
Μ	0 ~ 10%											OO	OOA	00Δ
Ν	0 ~ 20%												00Δ	00Δ
Р	0~50%													00Δ
R	0 ~ 100%													

(2) Double-component analyzer (NO/SO₂)

 \bigcirc : Double-component analyzer Measuring range (1st range)

\square	SO ₂	В	С	D	E	F	G	Н
		0~	0~	0 ~	0~	0~	0~	0 ~
NO		100ppm	200ppm	250ppm	500ppm	1000ppm	2000ppm	5000ppm
В	0 ~ 100ppm	0	0	0	0	0	0	0
С	0 ~ 200ppm	0	0	0	0	0	0	0
D	0 ~ 250ppm	0	0	0	0	0	0	0
E	0 ~ 500ppm	0	0	0	0	0	0	0
F	0 ~ 1000ppm	0	0	0	0	0	0	0
G	0 ~ 2000ppm	0	0	0	0	0	0	0

* 2nd range: Max. NO (0-200ppm), SO₂ (0-5000ppm), Selectable range up to 25 times of 1st. range

(3) Double-component analyzer (CO₂/CO)

(1~5): Double-component analyzer Measuring range (1st range)

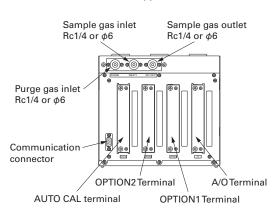
\square	CO	В	С	D	E	F	G	Н	J	К	L	М	N	Р	R
		0~	0~	0 ~	0 ~	0~	0 ~	0 ~	0~1%	0 ~ 2%	0~5%	0 ~ 10%	0 ~ 20%	0 ~ 50%	0 ~ 100%
CO ₂		100ppm	200ppm	250ppm	500ppm	1000ppm	2000ppm	5000ppm	0~1%	0~2%	0~5%	0~10%	0~20%	0~50%	0~100%
В	0 ~ 100ppm	1	1	1	1	1	1	1							
С	0 ~ 200ppm	1	1	1	1	1	1	1							
D	0 ~ 250ppm	1	1	1	1	1	1	1							
E	0 ~ 500ppm	1	1	1	1	1	1	1							
F	0 ~ 1000ppm	1	1	1	1	1	1	1							
G	0 ~ 2000ppm	1	1	1	1	1	1	1							
Н	0 ~ 5000ppm	1	1	1	1	1	1	1	3	3	3				
J	0~1%								3	(4)	(4)				
K	0 ~ 2%								3	(4)	(4)				
L	0~5%								3	(4)	4				
Μ	0 ~ 10%	2	2	2	2	2	2	2				(5)	5	5	5
Ν	0 ~ 20%	2	2	2	2	2	2	2				5	5	5	5
Р	0 ~ 50%											5	5	5	5
R	0 ~ 100%											5	5	5	5

* Max. measuring range as 2nd range is following. Selectable range up to 25times of 1st range.

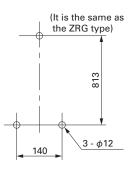
① : CO (0-5000ppm), CO₂ (0-5000ppm)

②: CO (0-5000ppm), CO₂ (0-20%)

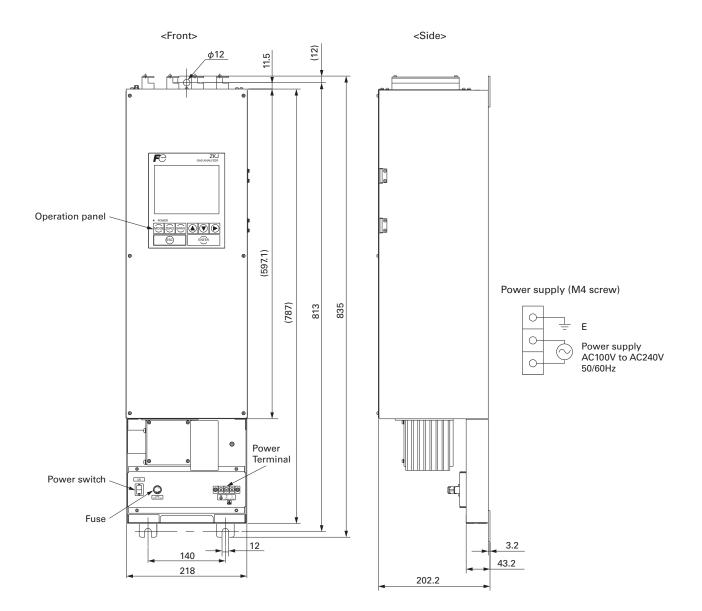
③: CO (0-50%), CO₂ (0-20%)

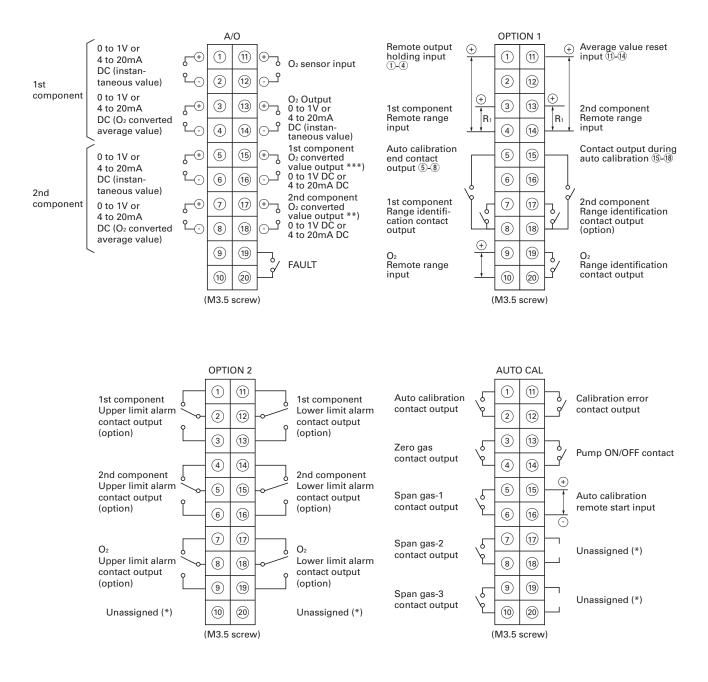

4 : Selectable range up to 25 times.

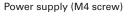
(5) : CO (0-100%), CO₂ (0-100%)

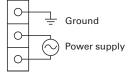

OUTLINE DIAGRAM (Unit: mm)

<Analyzer main unit>

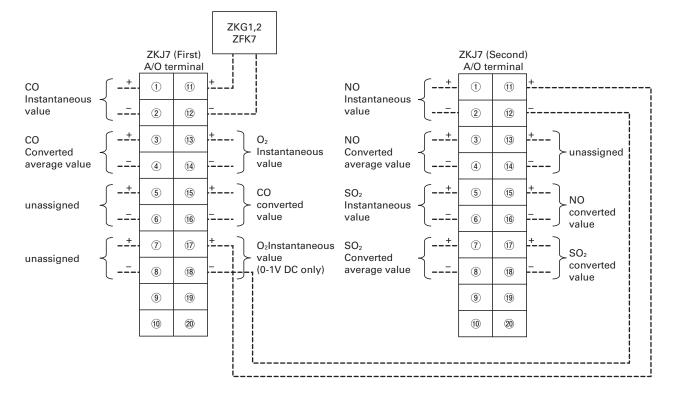



<Mounting size>

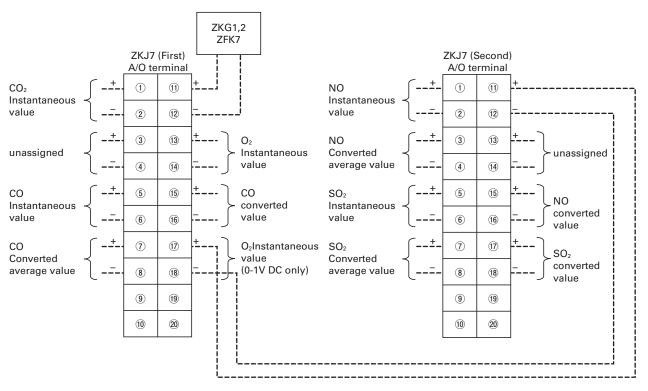



M10 screw is needed formounting to main unit

EXTERNAL CONNECTION DIAGRAM


- *) Do not use the terminal for relay.**) When two analyzers are lined up
- and installed with O₂ converted
 value and converted average value,
 by First analyzer O₂ instantaneous value
 (0-1V DC: 0-25% range equivalent) is outputted.
- ***) When two analyzers are lined up and installed and first analyzer is used as CO₂/CO sensor, CO converted value is outputted to 1st component O₂ converted value output.

Connector <CN2> For serial communication


	\sim	
1	$\left 0 \right\rangle$	6
2	0°	' '
) 7
3	$ $ \circ	8 8
4		
5	$ 0\rangle$	9

Connecting method/analog output component

Measurment of NO/SO $_2$ /CO/O $_2$ sensor [Example connection] (with converted value and converted average value)

 $Measurement \ of \ NO/SO_2/CO_2CO/O_2 \ sensor \ [Example \ connection] \ (with \ converted \ value \ and \ converted \ average \ value)$

Table 2. Correspondence between measurement channels and measured value

The following table gives measurement channels and their contents according to the code symbols.

Code symbol		ol			
5th digit 6th digit 22nd digit		22nd digit	Contents		
Р	Y	Y	Ch1: NO		
A	Y	Υ	Ch1: SO ₂		
D	Y	Y	Ch1: CO ₂		
В	Y	Υ	Ch1: CO		
E	Y	Y	Ch1: CH ₄		
F	Y	Y	Ch1: NO, Ch2: SO ₂		
G	Y	Y	Ch1: CO ₂ , Ch2: CO		
Р	А, В	Y	Ch1: NO, Ch2: O ₂		
A	A, B	Y	Ch1: SO ₂ , Ch2: O ₂		
D	А, В	Y	Ch1: CO ₂ , Ch2: O ₂		
В	А, В	Y	Ch1: CO, Ch2: O ₂		
E	А, В	Y	Ch1: CH₄, Ch2: O₂		
F	А, В	Y	Ch1: NO, Ch2: SO ₂ , Ch3: O ₂		
G	А, В	Y	Ch1: CO ₂ , Ch2: CO, Ch3: O ₂		
Р	А, В	А	Ch1: NO, Ch2: O ₂ , Ch3: Converted NO, Ch4: Converted NO average		
А	А, В	А	Ch1: SO ₂ , Ch2: O ₂ , Ch3: Converted SO ₂ , Ch4: Converted SO ₂ average		
В	А, В	А	Ch1: CO, Ch2: O ₂ , Ch3: Converted CO, Ch4: Converted CO average		
F	А, В	А	Ch1: NO, Ch2: SO ₂ , Ch3: O ₂ , Ch4: Converted NO, Ch5: Converted SO ₂ ,		
			Ch6: Converted NO average, Ch7: Converted SO ₂ average		
G	А, В	А	Ch1: CO ₂ , Ch2: CO, Ch3: O ₂ , Ch4: Converted CO, Ch5: Converted CO average		

1. In case of using only one analyzer.

2. In case of using two analyzers installed.

		1st a	analyzer	Second analyzer				
Code symbol				Code symbol				
5th digit	1	22nd digit	Contents	5th digit	, 6th digit	22nd digit	Contents	
В	Y	Y	Ch1: CO	P	Y	Y	Ch1: NO	
D	Y	Y	Ch1: CO ₂					
E	Y	Y	Ch1: CH₄					
G	Y	Y	Ch1: CO ₂ , Ch2: CO					
В	Y	Y	Ch1: CO	А	Y	Y	Ch1: SO ₂	
D	Y	Y	Ch1: CO ₂					
E	Y	Y	Ch1: CH₄					
G	Y	Y	Ch1: CO ₂ , Ch2: CO					
В	Υ	Y	Ch1: CO	F	Y	Y	Ch1: NO, Ch2: SO ₂	
D	Y	Y	Ch1: CO ₂					
E	Υ	Y	Ch1: CH₄					
G	Y	Y	Ch1: CO ₂ , Ch2: CO					
В	Y	Y	Ch1: CO	Р	А, В	Y	Ch1: NO, Ch2: O ₂	
D	Y	Y	Ch1: CO ₂					
E	Y	Y	Ch1: CH₄					
G	Y	Y	Ch1: CO ₂ , Ch2: CO					
В	Y	Y	Ch1: CO	A	А, В	Y	Ch1: SO ₂ , Ch2: O ₂	
D	Y	Y	Ch1: CO ₂					
E	Y	Y	Ch1: CH ₄					
G	Y	Y	Ch1: CO ₂ , Ch2: CO					
В	Y	Y	Ch1: CO	F	А, В	Y	Ch1: NO, Ch2: SO₂	
D	Y	Y	Ch1: CO ₂				Ch3: O ₂	
E	Y	Y	Ch1: CH ₄					
G	Y	Y	Ch1: CO ₂ , Ch2: CO					
D	А, В	Y	Ch1: CO ₂	Р	А, В	A	Ch1: NO	
_							Ch2: O ₂	
E	А, В	Y	Ch1: CH₄				Ch3: Converted NO	
							Ch4: Converted NO average	
D	А, В	Y	Ch1: CO ₂	A	А, В	A	Ch1: SO ₂	
-		X					Ch2: O ₂	
E	А, В	Y	Ch1: CH₄				Ch3: Converted SO ₂	
	A D	×		-		•	Ch4: Converted SO ₂ average	
D	А, В	Y	Ch1: CO ₂	F	А, В	A	Ch1: NO	
							Ch2: SO₂	
E		Y	Ch1: CH₄				Ch3: O ₂	
E	А, В	Y	Cn1: CH4				Ch4: Converted NO	
							Ch5: Converted SO ₂	
							Ch6: Converted NO average	
В	А, В	A	Ch1: CO, Ch2: O ₂	Р	D	A	Ch7: Converted SO₂ average Ch1: NO	
	А, Б	A	Ch3: Converted CO	r -		A	Ch1: NO Ch2: Converted NO	
			I I I I I I I I I I I I I I I I I I I					
G	А, В	A	Ch4: Converted CO average				Ch3: Converted NO average	
G	А, Б	A	Ch1: CO ₂ , Ch2: CO, Ch3: O ₂					
			Ch3: O ₂ Ch4: Converted CO					
			Ch4: Converted CO Ch5: Converted CO average					
В	А, В	A	Ch5: Converted CO average Ch1: CO, Ch2: O ₂	A	D	A	Ch1: SO ₂	
	А, В		Ch3: Converted CO				Ch2: Converted SO ₂	
			Ch4: Converted CO average				Ch3: Converted SO ₂ average	
G	А, В	A	Ch1: CO ₂ , Ch2: CO,				Clis. Converted SO ₂ average	
	Δ, Β		Ch3: O ₂					
			Ch4: Converted CO					
			Ch5: Converted CO average					
В	А, В	A	Ch1: CO, Ch2: O ₂	F	D	A	Ch1: NO	
1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	Ch3: Converted CO	'	⁻		Ch2: SO₂	
			Ch4: Converted CO average				Ch2: SO ₂ Ch3: Converted NO	
G	А, В	A	Ch1: CO ₂ , Ch2: CO,				Ch4: Converted SO ₂	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	Ch3: O ₂				Ch5: Converted NO average	
			Ch4: Converted CO				Ch6: Converted SO ₂ average	
			Ch5: Converted CO average				Sho. Sonvented 502 average	
L	1	1	e converter co average	L	1	1		

Example of Code symbol for replacement

[ZRG]

[2110]				
	Component	Example of code symbol		
1st analyzer	CO, CO ₂ , O ₂	ZRG6GBB2-0B0ND-FF1F5FY		
2nd analyzer	NO, SO ₂ , O ₂	ZRG6FBB2-0B0ND-FF1F5FY		
	Component	Example of code symbol		
1st analyzer	CO, CO ₂ , O ₂	ZKJ7GA15-YJBFB-FYYYYVVY-CAB → O₂ range 0-25% → External zirconia O₂ sensor		
2nd analyzer	NO, SO ₂	ZKJ7FD15-YJBFB-FYYYYYY-CAB → without external O₂ indication		

SCOPE OF DELIVERY

- Gas analyzer ... 1 unit
- Spare fuses (250V, 3.15A AC, delay type) ... 2 pcs
- Instruction manual ... 1 copy

ORDERING INFORMATION

- 1. Code symbols
- 2. Application and composition of sample gas

Items to be prepared separately

- Various sampling devices (refer to Data Sheets for the sampling devices)
- Dedicated zirconia O₂ sensor (see Page 16)

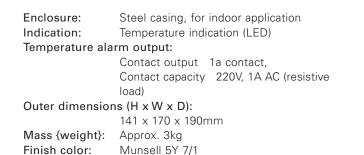
Exclusive Zirconia O₂ Sensor (to be purchased separately)

This sensor should be used with ZKJ7. Measuring method: Zirconia system Measurable component and measuring range:

	Measurable	component	Range			
O ₂		Oxygen	0 to 25vol%			
	eatability: earity:		Within \pm 0.5% of full scale Within \pm 1% of full scale			
Zero	o drift:		Within \pm 1% of full scale/week			
	n drift:		Within ± 2% of full scale/week Approx. 20 seconds (for 90% resp			
103	ponde time	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20 30001103 (101	00701030		

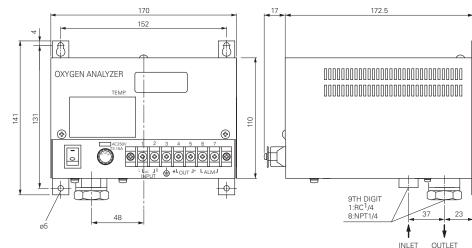
Response time: Approx. 20 seconds (for 90% response) Measured gas flow rate:

0.5 ± 0.25L / min

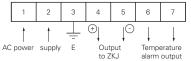

Remark: The Zirconia system, due to its principle, may produce a measuring error due to relative concentration versus the com-bustible O_2 gas concentration. Also, a corrosive gas (SO₂ of 250 ppm or more, etc.) may affect the life of the sensor.

Gas inlet/outlet size: Rc1/4 or NPT1/4

P


ower supply:	Rated voltage	; 100 to 115V AC or
		200 to 240V AC
	Rated frequency	; 50Hz/60Hz
	Max. rated power	; 215VA (during power
		ON)
		65VA (during steady-
		state operation)

OUTLINE DIAGRAM (Unit:mm)



CODE SYMBOLS

1 2 3 4 5 6 7 8 Z F K 7 Y Y 4 -	9 10 11 12 13 Y 0 Y Y	Description
7YY		Measuring method Zirconia method
9 B C		Power supply 100 to 115V AC 50/60Hz(Standard) 200 to 240V AC 50/60Hz(Standard) 200 to 240V AC 50/60Hz(CE mark)
	1 8	Gas inlet/outlet size Rc ¹ /4 NPT ¹ /4

EXTERNAL CONNECTION DIAGRAM

▲ Caution on Safety

*Before using this product, be sure to read its instruction manual.

F Fuji Electric Co., Ltd.

Global Sales Section

Instrumentation & Sensors Planning Dept. 1, Fuji-machi, Hino-city, Tokyo 191-8502, Japan http://www.fujielectric.com Phone: +81-42-514-8930 Fax: +81-42-583-8275 http://www.fujielectric.com/products/instruments/