

Innovating Energy Technology

Fuji IGBT Simulator for Automotive Ver. 6.2 or later Operation manual

End-User Software License Agreement

(Caution) Before downloading and using the software, please read the following "End-user Software Agreement". By downloading the software, you agree to be bound by the terms of the following agreement. If you don't agree the agreement, remove the software and erase all copies of the software and the related documents.

End-User Software License Agreement

This is a software license agreement (the "Agreement") between you ("Customer") and Fuji Electric Co. Ltd. ("Fuji") with regard to the use of Fuji IGBT Simulator ("Software").

- (Right of Use) This software is available to use without paying additional fees to Fuji. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted.
- 2. (Copyright) Fuji retains the copyright, title and ownership of the software, the manual and related documents.
- 3. (Prohibitions) You may not reverse engineer, decompile, or disassemble this software.
- 4. (Limited Warranty) Fuji makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.

Fuji pays close attention to the quality of the contents on this simulator. However, such continents are provided "as is "without guarantees of any kinds.

5. (Program update) The program specification of this software is subject to change without any notice.

Contents

For Fuji Electric

1. Software Setup	p.4
2. Menu	p.5
3. Module Selection	p.6
4. Set Thermal Conditions	p.7
5. Single Mode Calculation	p.8
6. Parameter Sweep Calculation	p.16
7. Cycle Mode Calculation	p.19
8. Application circuit and PWM control	p.31

This software is suitable for Microsoft® Windows® Windows7, Windows & Windows10.

In order to operate, Microsoft .NET Framework 3.5 or later is required

Unzip the downloaded file and copy to a custom folder.

Please double-click the file "IGBTSim.exe" to start the simulator.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Menu

Module Selection

Set Thermal Conditions

Single Mode Calculation

Input simulation condition (Single Mode)

Loss Calibration Factor

🖻 Fuji IGBT	Γ Simulator Ver 6.2.0 for Automotive	- D ×	
Language Help			
Module Selection Thermal Condition Single Mode Cycle Mode			
6MBI800XV-075V-01(FR=10L Circuit Thermal Condition		Calculate	
3-Phase 2-Level Inverter V Fixed Coolant Temp. T	「w 65 •⊂		
PWM Modulation Method Detail Temperat	ture Condition	<< Васк	
Calculation Condition	Explanation	Loss Calibration	Factor X
Number of Parallel Devices 1 pcs Sweep			
Output Freq. Fo 10 (Hz)	· · · · · · · · · · · · · · · · · · ·		
Output Current Io 100 (Arms)			Close
Switching Freq. Fsw 4 (kHz)			
Power Factor 0.9	T1 D1	IGBT conduction loss	× 1.00
Click "Loss Calibration Fact	tor" tab.	IGBT turn-on loss	× 1.00
Duty The dialog box to input each	ficiente for	IGBT turn-off loss	× 1.00
DC Link Vo The dialog box to input coe		FWD conduction loss	× 1.00
TIRG(ON) Calibrating the loss calculat	ion value will	FWD reverse recovery loss	× 1.00
TIRG(OFF OPEN.			
12 RG(ON) 2.7 (Ω)			
12 RG(0FF) 1.0 (Ω)			
6	mounted on a	Every generated loss by I	GBT / FWD is
Loss Calibration Easter	single heat sink.	multiplied with the provide	ed calibration
		factor.	
	_		

Run Calculation

R		Fuji IGB1	Simulator Ver (6.2.0 for Automotive – 🗆 🗙						
Language Help										
Module Selection Thermal Con	dition Single Mode	Cycle Mode								
6MBI800XV-075V-01(FR=10L										
Circuit Thermal Condition Calculate										
3-Phase 2-Level Inverter V Fixed Coolant Temp. Tw 65 °C										
PWM Modulation Method) otail Tomporat	ure Condition	<< Back						
Sinusoidal	~	Jetali Temperal	die Condition							
Calculation Condition		Sweep	Explanation	Calculation will start when you click the						
Number of Parallel Devices	1 pcs			"Calculation" Button						
Output Freq. Fo	10 (Hz)	0	Ă Ĭ							
Output Current Io	100 (Arms	s) 🔍								
Switching Freq. Fsw	4 (kHz)	0								
Power Factor	0.9	0		T1 D1						
Modulation Rate	1	0		$\circ \rightarrow \mathbf{I_0}$						
Duty	0	0								
DC Link Voltage VDC	400 (V)	0								
T1 RG(ON)	2.7 (Ω)	0								
T1 RG(OFF)	1.8 (Ω)	0								
T2 RG(ON)	2.7 (Ω)	0								
T2 RG(OFF)	1.8 (Ω)	0								
			All devices an	re						
			mounted on a							
Loss Calibration Factor			single neat si							

Simulation Results (Single Mode)

Simulation Results (Total Loss)

Simulation Results (Single Mode)

For Fuji Electric

Display Multiple Results

Multiple windows of calculation result can be displayed at the same time (max. 40).

A new calculation result window is displayed each time the calculation execution button is pushed. The windows will be displayed in order Result001, Result002, ... continous numbering

Please use this function for comparative examination when changing the calculation conditions.

🖻 Fuji IGBT Simulator Ver 6.2.0 for Automotive – 🗖 💌	📧 Fuji IGBT Simulator Ver 6.2.0 for Automotive Result:001 – 🗆 🗙
Language Help MeduEscicito: Thermal Condition Sirele Mode Cycle Mode GMEBOX/V075V-01 (FR=10L Cricuit Primate 2-Level koverter Calculation Condition Calculation Condition Calculation Condition Calculation Condition Calculation Condition Calculation Condition Calculation Condition Calculation Condition Number of Parallel Davices 1 pcs Sweep Output Freq. Fo 10 (Hz) Output Freq. Fo 10 (Hz) Output Freq. Fo 10 (Hz) Output Freq. Fo 0 (Hz) (Hz) Modulation Rate 1 (Hz) Duty I Ra(O(N)) T I Ra(O(N)) T I Ra(O(N)) T I Ra(O(F)) T I R	ObdenovvortsvortsPretrett, per minit Dendition 3-mask 2-ker interest Statest 2-ker interest Dendition 2-mask 2-ker interest Networts Networts Dendition Dendition Networts Networts Dendition Dendition Dendition Networts Networts Dendition Dendition Dendition Dendition Networts Networts Dendition

Parameter Sweep Calculation

In the parameter sweep calculation one of the simulation parameter is variable.

It is possible to calculate the change of losses and temperatures.

Parameter Sweep Calculation

Parameter Sweep Calculation Result

Cycle Mode Calculation Boundary Condition Innovating Energy Technology

Set Load Cycle

Set Load Cycle

For Fuji Electric

Set Load Cycle

Copy & Paste cell(s) value

Select a cell or range of cell(s) \rightarrow Right click \rightarrow Copy

	#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit			
•	1	0	60	5	0	0.9	Conv		Conv.			3-phase Sinusoidal	-
	2	1	60	5	150	0.9	Cut Paste Insert Insert x100 Clear			3-phase Sinusoidal	-		
	3	2	60	5	150	0.9				3-phase Sinusoidal	-		
	4	2	60	5	50	-0.9				3-phase Sinusoidal	-		
	5	3	60	5	50	-0.9				3-phase Sinusoidal	-		
	6	4	60	5	0	-0.9				3-phase Sinusoidal	-		
	7									3-phase Sinusoidal	-		
							Delete		_				

Select cell(s) \rightarrow Right click \rightarrow Paste VDC t Fo Fsw lo Mod. PF # Duty Circuit [Hz] [kHz] [A]* Rate [sec] [V] 0 1 0 60 5 0.9 1 600 3-phase Sinusoidal 1 2 5 1 60 150 0.9 1 1 600 3-phase Sinusoidal 3 2 5 60 150 0.9 1 1 600 3-phase Sinusoidal 4 5 2 60 50 -0 690 3-phase Sinusoidal Copy 5 5 -0.9 3 60 50 3-phase Sinusoidal Cut 6 5 0 -0. 4 60 3-phase Sinusoidal Paste 7 3-phase Sinusoidal . Insert Insert x100 Clear Delete

Select a line \rightarrow Right click \rightarrow Paste

Fo VDC Fsw lo Mod. t # PF Duty Circuit [sec] [Hz] [kHz] [A]* Rate M 1 0 60 5 0 0.9 1 600 3-phase Sinusoidal 1 2 1 60 5 150 0.9 1 1 600 3-phase Sinusoidal 3 2 60 5 150 0.9 1 1 600 3-phase Sinusoidal 4 2 60 5 50 -0.9 1 1 600 3-phase Sinusoidal 5 3 5 60 50 -0.9 1 1 600 3-phase Sinusoidal 6 60 5 0 4 -0.9 1 1 600 3-phase Sinusoidal 3-phase Sinusoidal Сору Cut Paste Insert Insert x100 Clear Delete

Copy & Paste line

Select a line (click 1st column) \rightarrow Right click \rightarrow Copy

		#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit	
		4	0	60	5	0	0.9	1	1	600	3-phase Sinusoidal	•
	Сору		~	5	150	0.9	1	1	600	3-phase Sinusoidal	•	
	Paste Insert			5	150	0.9	1	1	600	3-phase Sinusoidal	•	
				5	50	-0.9	1	1	600	3-phase Sinusoidal	•	
				5	50	-0.9	1	1	600	3-phase Sinusoidal	•	
	Clear		[5	0	-0.9	1	1	600	3-phase Sinusoidal	•	
			[3-phase Sinusoidal	•	
	De	lete	;									

Simulation Results (Cycle Calculation) For Fuji Electric Innovating Energy Technology

Simulation Results (Cycle Mode)

Circuits & PWM Methods

Circuits & Modulation Methods

This page shows a list of circuits and PWM methods that are supported by the simulator.

Circuit Topology

PWM Method (SPWM, SVPWM)

The reference voltage is a sinusoidal waveform.

The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio *m*.

$$V_{\rm ref} = mV_{\rm dc}$$

The maximum value of *m* is 1.

The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio *m*

$$V_{\rm ref} = \frac{\sqrt{3}}{2}mV_{\rm dc}$$

m is defined to be the same output voltage to the sinusoidal PWM.

The maximum value of *m* is $2/\sqrt{3} = 1.1547$

PWM Method (3rd harmonic injection)

The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio m

$$V_{\rm ref} = \frac{\sqrt{3}}{2}mV_{\rm dc}$$

m is defined to be the same output voltage to the sinusoidal PWM.

The maximum value of *m* is $2/\sqrt{3} = 1.1547$

Fuji Electric

Innovating Energy Technology

2-Phase Modulation

The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio *m*.

$$V_{\rm ref} = \frac{\sqrt{3}}{2}mV_{\rm dc}$$

m is defined to be the same output voltage to the sinusoidal PWM.

The maximum value of *m* is $2/\sqrt{3} = 1.1547$

The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio *m*.

$$V_{\rm ref} = \frac{\sqrt{3}}{2}mV_{\rm dc}$$

m is defined to be the same output voltage to the sinusoidal PWM.

The maximum value of *m* is $2/\sqrt{3} = 1.1547$

Motor DC Lock Operation

Calculate the IGBT / FWD loss when locking the motor rotation with a servo drive or the like.

As shown in the figure below, one IGBT of the upper arm (or the lower arm) of one phase and the IGBT of the other arm of the other two phases are switching controlled.

Current path when IGBT is off.

Note: The heat sink temperature T_f is calculated based on the assumption that the surface temperature distribution of the heat sink's area, which is in contact with the module, is uniform.

In the motor lock operation only specific elements generate heat. Thus the heat does not spread optimally on the heat sink's surface and the heat sink's thermal resistance increases. As a result, Tf and Tc might become high.

If you have any questions, please contact us.

http://www.fujielectric.com/products/semiconductor/contact/index.html

FO Fuji Electric Innovating Energy Technology