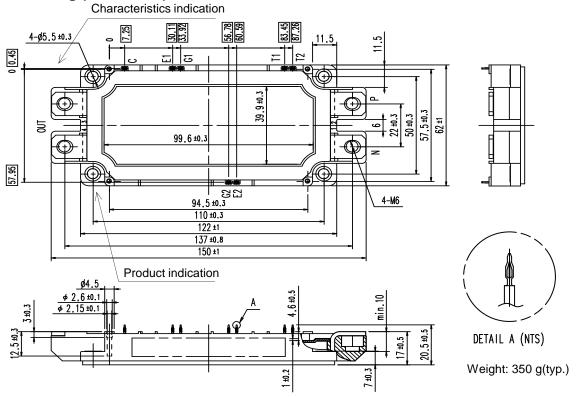
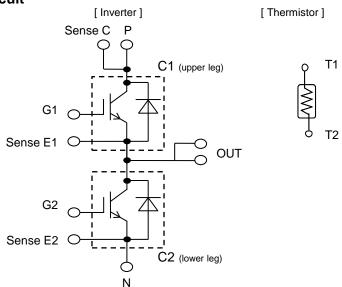


IGBT Modules

Power Module (X series) 1200V / 600A / 2-in-1 package


■ Features

Low $V_{\rm CE(sat)}$ Low Inductance Module structure Press fit pin terminals


■ Applications

Inverter for Motor Drives, AC and DC Servo Drives
Uninterruptible Power Supply Systems, Wind Turbines, PV Power Conditioning Systems

■ Outline drawing (Unit:mm)

■ Equivalent Circuit

IGBT Modules

■ Absolute Maximum Ratings (at T_C= 25°C unless otherwise specified)

		Items	Symbols	Cond	litions	Maximum Ratings	Units	
	Collecto	r-emitter voltage, gate-emitter short-circuited	V _{CES}			1200	V	
	Gate-em	nitter voltage, collector-emitter short-circuited	V _{GES}			±20	V	
	Collecto	r current	Ic	Continuous	T _C =100°C	600		
	Repetitiv	ve peak collector current	I _{CRM}	1ms	•	1200	A	
Inverter	Forward	current	I _F			600	A	
λ	Repetitiv	ve peak forward current	I _{FRM}	1ms		1200	1	
_	Total power dissipation		P _{tot}	1 device		3125	W	
	Virtual ju	inction temperature	$T_{\rm vj}$			175		
	Operating junction temperature		T_{vjop}			175	°C	
	(under s	(under switching conditions)						
Cas	Case temperature		T _c			125	1	
Sto	Storage temperature		$T_{\rm stg}$			-40 ~ 125		
Iso	Isolation between terminal and copper base (*1)		V	AC: 1min.		4000	Vrms	
vol	tage	between thermistor and others (*2)	V_{isol}	AC. IIIIII.		4000	VIIIIS	
Мо	Mounting torque of screws to heatsink (*3)		Ms	M5		6.0	N⋅m	
Мо	Mounting torque of screws to terminals (*3)			M6		6.0] '''''	

^(*1) All terminals should be connected together during the test.

(*3) Recommendable Value: : Mounting torque of screws to heatsink Recommendable Value: : Mounting torque of screws to terminals $2.5 \sim 6.0 \text{ N} \cdot \text{m}$ (M5) $3.5 \sim 6.0 \text{ N} \cdot \text{m}$ (M6)

^(*2) Two thermistor terminals should be connected together, other terminals should be connected together and shorted to base plate during the test.

IGBT Modules

■ Electrical characteristics (at T_{vj}= 25°C unless otherwise specified)

	Items		Cumb ala	Camalitia	Ch	Heite			
$ \begin{array}{c} \text{current, gate-emitter short-circuited} \\ \hline \text{Gate leakage current, collector-emitter short-circuited} \\ \hline \text{Gate leakage current, collector-emitter short-circuited} \\ \hline \text{Gate-Emitter} \\ \text{threshold voltage} \\ \hline \\ \hline \text{Collector-Emitter} \\ \text{saturation voltage} \\ \hline \\ \hline \text{Collector-Emitter} \\ \hline \text{saturation voltage} \\ \hline \\ \hline \text{Collector-Emitter} \\ \hline \text{saturation voltage} \\ \hline \\ \hline \text{Collector-Emitter} \\ \hline Solution of the problem of the p$			Symbols	Conditions		min.	typ.	max.	Units
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		current, gate-emitter short-circuited	I _{CES}			-	-	150	μA
$\frac{V_{\text{GE}(\text{th})}}{V_{\text{CE}(\text{sat})}} = \frac{V_{\text{GE}(\text{th})}}{I_{\text{C}}} = 600\text{M} = \frac{6.0}{1.0} = \frac{6.5}{0.0} = \frac{7.0}{0.0} \text{V}$ $\frac{V_{\text{CE}(\text{sat})}}{I_{\text{Ce}}} = 600\text{M} = \frac{V_{\text{N}} = 25^{\circ}\text{C}}{V_{\text{N}} = 25^{\circ}\text{C}} - \frac{2.20}{0.265} = \frac{2.65}{0.000} = \frac{2.65}{0.0000} = \frac{2.65}{0.00000} = \frac{2.65}{0.00000} = \frac{2.65}{0.000000} = \frac{2.65}{0.00000000000000000000000000000000000$		collector-emitter short-	I _{GES}			-	-	300	nA
			$V_{GE(th)}$			6.0	6.5	7.0	V
$\frac{\text{permitted}}{\text{Substitute}} = \frac{V_{\text{CE(sat)}}}{(\text{chip})} = \frac{I_{\text{CE}}}{600A} = \frac{T_{\text{vi}} - 125^{\circ}\text{C}}{T_{\text{vi}} - 150^{\circ}\text{C}} - \frac{1.80}{1.90} - \frac{V_{\text{Vi}}}{1.90} -$					T _{vj} =25°C	-	2.20	2.65	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Collector-Emitter		V _{GE} = 15V	T _{vj} =25°C	-	1.45	1.90	Ī ,,
$ \frac{Deg}{Deg} = \begin{cases} $		saturation voltage	$V_{CE(sat)}$	I _C = 600A	T _{vj} =125°C	-	1.80	-]
$\frac{b}{\Delta E} = \frac{C_{\text{les}}}{C_{\text{cos}}} = \frac{C_{\text{les}}}{C_{\text{res}}} = \frac{C_{\text{les}}}{C_{\text{les}}} = \frac{C_{\text{les}}}{C_$					T _{vj} =150°C	-	1.90	-	
					<i>T</i> _{vj} =175°C	-	1.95	-	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Internal gate resistance	r_{g}	-	'	-	1.67	-	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	64	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Capacitance		V_{CE} =10V, V_{GE} =0V, f=1MHz		-	2.2	-	nF
$ \frac{1}{4} 1$						-	0.57	-	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Gate charge	Q_{G}			-	4.2	-	μC
$t_{\text{d(on)}} = t_{\text{d(on)}} = t_{\text$	ter	Forward voltage		-	T _{vj} =25°C	-	2.35	2.80	
$t_{\text{d(on)}} = t_{\text{d(off)}} = t_{\text{rr}} = t_{\text{rr}} = t_{\text{loc}} = $) Ye				T _{vj} =25°C	-	1.60	2.05	V
$t_{\rm d(on)} = t_{\rm d(on)} = $	=		V_{F}		T _{vj} =125°C	-	1.65	-	
$t_{\rm d(on)} = t_{\rm d(on)} = $					T _{vi} =150°C	-	1.60	-	
$t_{\rm d(on)} = t_{\rm d(on)} = $					T _{vi} =175°C	-	1.60	-	1
$t_{\rm d(on)} = t_{\rm d(on)} = t_{\rm d(on)} = t_{\rm rec} = t_{\rm los} $			t _{d(on)}	$V_{\rm CC} = 600 \rm V$	T _{vi} =25°C	-	0.42	-	
$R_{\rm G} = \pm 0.56\Omega \\ L_{\rm S} = 35 {\rm nH} \\ t_{\rm f} \\ L_{\rm S} = 35 {\rm nH} \\ t_{\rm d(off)} \\ t_{\rm f} \\ t$		Switching time (*1)		$I_{\rm C}$, $I_{\rm F} = 600$ A		-	0.46	-	
$t_{r} = 35 \text{nH} \qquad t_{r} = 35 \text{nH} \qquad t_{r} = 25^{\circ}\text{C} - 0.09 - 0.09 - 0.011 - 0.09 - 0.011 - 0.09 - 0.011 - 0.011 - 0.011 - 0.012 - 0.011 - 0.012 - 0$				$V_{GE} = +15/-15 \text{ V}$		-	0.48	-	
Switching time (*1) $t_{\rm r} = \frac{T_{\rm vj} = 125^{\circ} \rm C}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.11}{0.11} - \frac{T_{\rm vj} = 150^{\circ} \rm C}{1.011} - \frac{1.011}{0.011} - 1$						-	0.49	-	
Switching time (*1)			t _r	$L_{\rm S} = 35 \rm nH$			0.09	-	
Switching time (*1) $t_{\text{d(off)}} = t_{\text{d(off)}} = t_{\text{f}} = t$						-		-	
$t_{\rm d(off)} = t_{\rm d(off)} = t_{\rm rr} = t$					$T_{\rm vj} = 150^{\circ} \rm C$	-		-	
$t_{\rm d(off)} = t_{\rm d(off)} = t_{\rm rr} = t$					I _{vj} =175°C	-		-	
$t_{\rm f} = t_{\rm rr} =$			$t_{d(off)}$		7 _{vj} =25°C	-		-	
$t_{\rm f} = t_{\rm f} = t_{\rm fr} = $					T _150°C	-		-	μs
$t_{\rm f} = \begin{bmatrix} T_{\rm vj} = 25^{\circ}{\rm C} & - & 0.07 & - \\ T_{\rm vj} = 125^{\circ}{\rm C} & - & 0.09 & - \\ T_{\rm vj} = 150^{\circ}{\rm C} & - & 0.10 & - \\ T_{\rm vj} = 175^{\circ}{\rm C} & - & 0.10 & - \\ T_{\rm vj} = 25^{\circ}{\rm C} & - & 0.14 & - \\ T_{\rm vj} = 25^{\circ}{\rm C} & - & 0.26 & - \\ T_{\rm vj} = 150^{\circ}{\rm C} & - & 0.28 & - \\ \end{bmatrix}$					$T_{\rm vj} = 130^{\circ} \text{C}$			-	-
$t_{\rm f} = \begin{bmatrix} T_{\rm vj} = 125^{\circ}{\rm C} & - & 0.09 & - \\ T_{\rm vj} = 150^{\circ}{\rm C} & - & 0.10 & - \\ T_{\rm vj} = 175^{\circ}{\rm C} & - & 0.10 & - \\ T_{\rm vj} = 25^{\circ}{\rm C} & - & 0.14 & - \\ T_{\rm vj} = 125^{\circ}{\rm C} & - & 0.26 & - \\ T_{\rm vj} = 150^{\circ}{\rm C} & - & 0.28 & - \\ \end{bmatrix}$			t _f	1					
Reverse recovery time $t_{rr} = \begin{bmatrix} T_{vj} = 150 \text{ C} & - & 0.10 & - \\ T_{vj} = 175^{\circ}\text{C} & - & 0.10 & - \\ T_{vj} = 25^{\circ}\text{C} & - & 0.14 & - \\ T_{vj} = 125^{\circ}\text{C} & - & 0.26 & - \\ T_{vj} = 150^{\circ}\text{C} & - & 0.28 & - \end{bmatrix}$					T _{vi} =125°C	-	0.09	_	<u> </u>
Reverse recovery time t_{rr} $T_{vj}=25^{\circ}C$ - 0.14 - $T_{vj}=125^{\circ}C$ - 0.26 - $T_{vj}=150^{\circ}C$ - 0.28 -					$T_{\rm vj}$ =150°C			-	<u> </u>
Reverse recovery time $t_{rr} = \begin{bmatrix} T_{vj} = 125^{\circ}\text{C} & - & 0.26 & - \\ T_{vj} = 150^{\circ}\text{C} & - & 0.28 & - \end{bmatrix}$				4	I _{vj} =175°C			-	
Reverse recovery time t_{rr} T_{vj} =150°C - 0.28 -			t _{rr}		1 _{vj} =25°C				
		Reverse recovery time						-	1
					$T_{vi} = 175^{\circ}C$		0.31	-	

^(*1) Turn on time $(t_{on}) = t_{d(on)} + t_{r}$, Turn off time $(t_{off}) = t_{d(off)} + t_{f}$

IGBT Modules

■ Electrical characteristics (at T_{vj} = 25°C unless otherwise specified)

Items		Symbols	Conditions			Characteristics			Units
		Syllibols				min.	typ.	max.	Units
Inverter		E _{on}		600V	$T_{\rm vj}$ =25°C	-	38.7	-	
	Switching loss (per pulse)			= 600A		-	59.5	-	
			$V_{\rm GE} =$	+15/-15 V	T _{vj} =150°C	-	63.4	-	
				$R_{\rm G} = \pm 0.56\Omega$ $T_{\rm vj} = 175^{\circ}\text{C}$ -	-	73.2	-		
		E _{off}	L _S =	35 nH	$T_{\rm vj}$ =25°C	-	54.2	-	
					T _{vj} =125°C	-	63.1	-	
					T _{vj} =150°C	-	66.0	-	mJ
					T _{vj} =175°C	-	70.7	-	
					T _{vj} =25°C	-	20.2	-	
					T _{vj} =125°C	-	41.3	-	
					T _{vj} =150°C	-	49.5	-	
					<i>T</i> _{vj} =175°C	ı	53.0	-	
ţō	Resistance	R	<i>T</i> =	25°C		-	5000	-	Ω
nis	Toolotarioo		<i>T</i> =	100°C		465	495	520	32
Thermistor	B value	В	T =	25/ 50°C		3305	3375	3450	К

NOTICE:

The external gate resistance ($R_{\rm G}$) shown above is one of our recommended value for the purpose of minimum switching loss. However the optimum $R_{\rm G}$ depends on circuit configuration and/or environment. We recommend that the $R_{\rm G}$ has to be carefully chosen based on consideration if IGBT module matches design criteria, for example, switching loss, EMC/EMI, spike voltage, surge current and no unexpected oscillation and so on.

■Thermal resistance characteristics

Items	Symbols	Conditions	Ch	Units		
items	Syllibols	Conditions	min.	typ.	max.	Ullits
Thermal resistance junction to	D	Inverter IGBT	-	-	0.048	
case(1 device)	$R_{\text{th(j-c)}}$	Inverter FWD	-	-	0.057	K/W
Thermal resistance case to	$R_{\rm th(c-s)}$	with 1 W/(m·°C) thermal grease	_	0.0167	_	1000
heatsink(1 IGBT+1 FWD) (*1)	r th(c-s)	with 1 vv/(iii- 0) thermal grease		0.0107	_	

^(*1) This is the value which is defined mounting on the additional heatsink with thermal grease.

15V

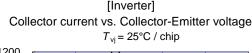
12V

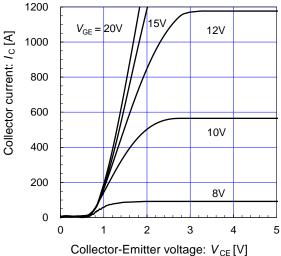
10V

8٧

[Inverter]

Collector current vs. Collector-Emitter voltage (typ.)


 $T_{\rm Vi}$ = 175°C / chip


 $V_{\rm GE} = 20 \rm V$

2MBI600XNF120-50

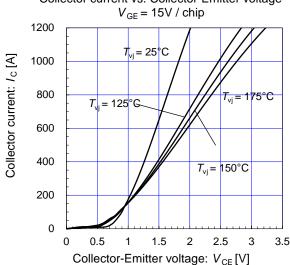
IGBT Modules

Collector current: Ic [A]

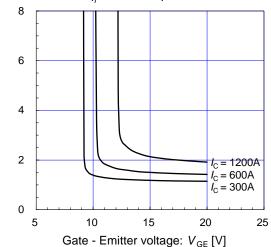
1200

1000

800

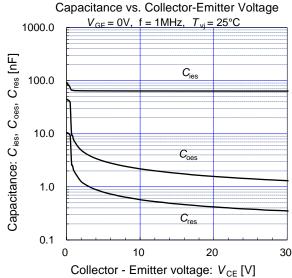

600

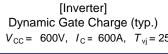
400

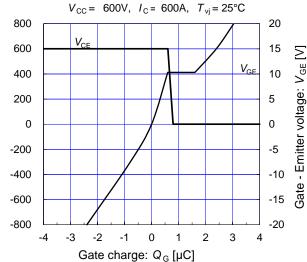

200

0

[Inverter] Collector current vs. Collector-Emitter voltage

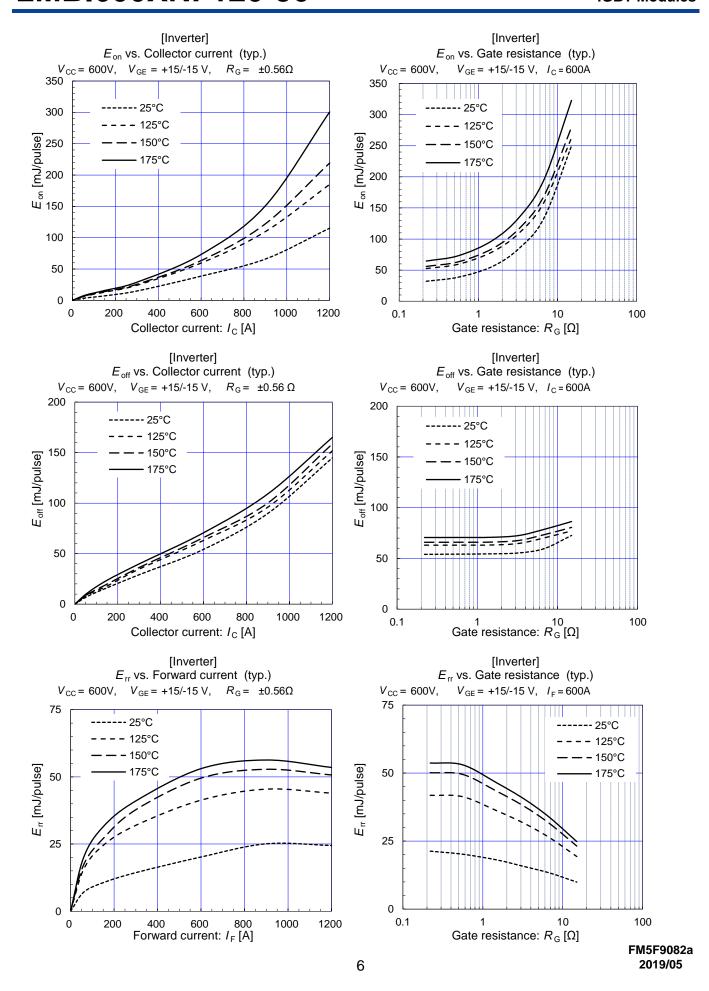


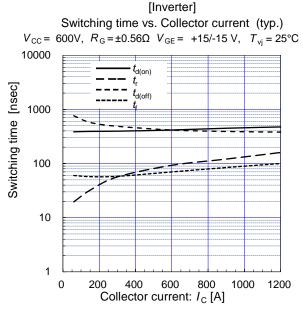

[Inverter] Collector-Emitter voltage vs. Gate-Emitter voltage $T_{\rm vi} = 25^{\circ} \tilde{\rm C}$ / chip 8 Collector - Emitter voltage: V_{CE} [V]

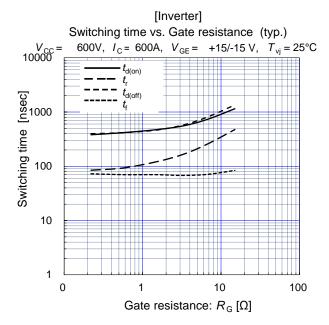


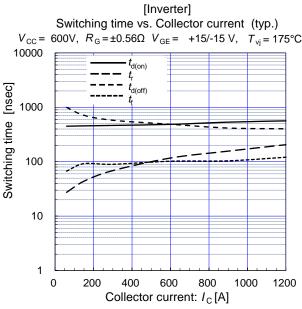
Collector-Emitter voltage: V_{CE}[V]

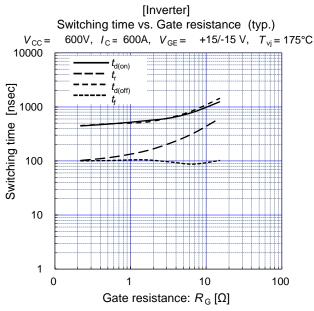
[Inverter] Capacitance vs. Collector-Emitter Voltage

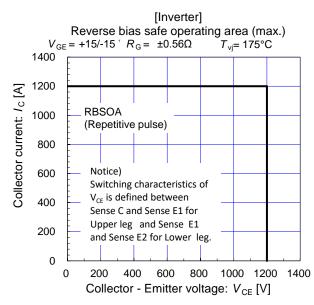


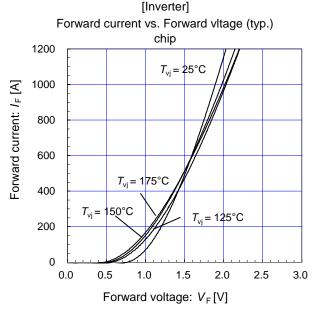

Collector - Emitter voltage: $V_{ extsf{CE}}\left[extsf{V}
ight]$

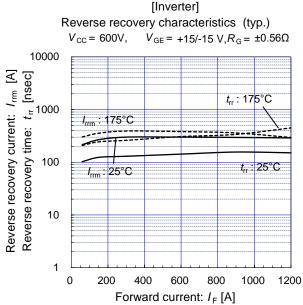

IGBT Modules

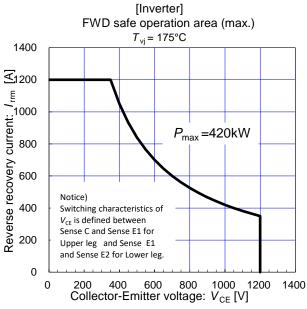


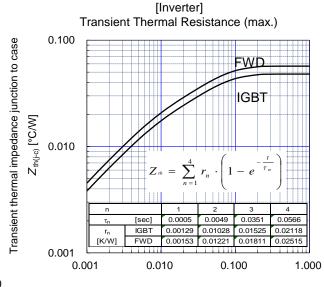


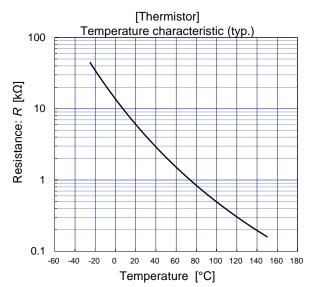

IGBT Modules










IGBT Modules

Pulse width: t_w [sec]

IGBT Modules

Warnings

- 1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of 5/2019. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.
- 2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
- 3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
- 4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
 - ·Computers ·OA equipment ·Communications equipment (terminal devices) ·Measurement equipment
 - ·Machine tools ·Audiovisual equipment ·Electrical home appliances ·Personal equipment ·Industrial robots etc.
- 5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 - ·Transportation equipment (mounted on cars and ships) ·Trunk communications equipment
 - ·Traffic-signal control equipment ·Gas leakage detectors with an auto-shut-off feature
 - · Emergency equipment for responding to disasters and anti-burglary devices · Safety devices · Medical equipment
- 6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 - ·Space equipment ·Aeronautic equipment ·Nuclear control equipment ·Submarine repeater equipment
- 7. Copyright (c)1996-2019 by Fuji Electric Co., Ltd. All rights reserved.

 No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.
- 8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.