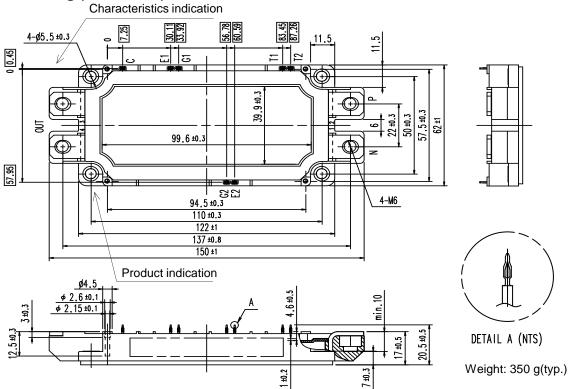


Innovating Energy Technology

2MBI600XNF170-50

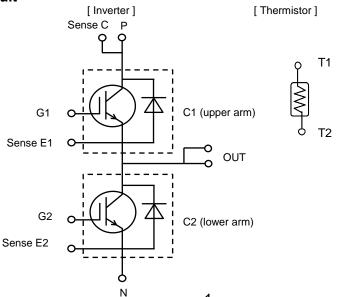
IGBT Modules

Power Module (X series) 1700V / 600A / 2-in-1 package


Features

Low $V_{CE(sat)}$ Low Inductance Module structure Press fit pin terminals

Applications


Inverter for Motor Drives, AC and DC Servo Drives Uninterruptible Power Supply Systems, Wind Turbines, PV Power Conditioning Systems

■ Outline drawing (Unit : mm)

NOTE) ______ shows theoretical dimension and tolerance is </u> 🖗 ØO.5

Equivalent Circuit

IGBT Modules

■ Absolute Maximum Ratings (at T_c= 25°C unless otherwise specified)

		Items	Symbols	Cond	itions	Maximum Ratings	Units
	Collecto	r-emitter voltage, gate-emitter short-circuited	V _{CES}			1700	V
	Gate-en	nitter voltage, collector-emitter short-circuited	V _{GES}			±20	V
	Collecto	r current	/ _c	Continuous	$T_{\rm C}$ =100°C	600	
	Repetitiv	ve peak collector current	I _{CRM}	1ms		1200	_
rter	Forward	current	/ _F			600	A
E Forward current Repetitive peak forward current		I _{FRM}	1ms		1200		
Total power dissipation		P _{tot}	1 device		3845	W	
Virtual junction temperature			${T}_{ m vj}$			175	
Operating virtual junction temperature			T _{vjop}			175	
(under switching conditions)						175	°C
Case temperature		T _c			125		
Storage temperature		T_{stg}			-40 ~ 125		
Isolation between terminal and copper base (*1)		V _{isol}	AC: 1min.		4000	Vrms	
voltage between thermistor and others (*2)		V isol	AC. IIIIII.		4000	VIIIIS	
Mc	Mounting torque of screws to heatsink (*3)		Ms	M5		6.0	N⋅m
Mc	Mounting torque of screws to terminals (*3)		Μ _t	M6		6.0	'''''

(*1) All terminals should be connected together during the test.

(*2) Two thermistor terminals should be connected together, other terminals should be connected together and shorted to base plate during the test.

(*3)Recommendable Value:: Mounting torque of screws to heatsink $2.5 \sim 6.0 \text{ N·m}$ (M5)Recommendable Value:: Mounting torque of screws to terminals $3.5 \sim 6.0 \text{ N·m}$ (M6)

IGBT Modules

■ Electrical characteristics (at *T*_{vj}= 25°C unless otherwise specified)

			.				Characteristics			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Items	Symbols	Conditions					ax. Units	
$\frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$		current, gate-emitter short- circuited	I _{CES}	-		-	-		μA	
$\frac{\text{threshold voltage}}{\text{Collector-emitter}} = \frac{V_{\text{GE(m)}}}{V_{\text{CE(sat)}}} _{C} = 600\text{mA} = \frac{6.0}{6.5} = \frac{7.0}{7.0} = \frac{6.0}{1.70} = \frac{6.0}{1.70}$		collector-emitter short-	I _{GES}	V _{CE} =0V, V _{GE} =±2	20V	-	-	300	nA	
$\frac{\text{(terminal)}}{\text{saturation voltage}} = \frac{(\text{terminal)}}{V_{\text{CE(sat)}}} + \frac{V_{\text{GE}} = 15 \text{V}}{I_{\text{C}} = 600 \text{A}} + \frac{T_{\text{V}} = 25^{\circ} \text{C}}{T_{\text{V}} = 125^{\circ} \text{C}} - \frac{2.43}{1.70} + \frac{2.15}{2.15} + \frac{2.10}{1.70} + \frac{2.15}{1.70} + \frac{1.70}{1.70} + \frac{1.70}{1.70$			$V_{\rm GE(th)}$	-		6.0	6.5	7.0	V	
$\frac{1}{1000} = \frac{1}{1000} = 1$					T _{vj} =25°C	-	2.45	2.90		
$\frac{1}{10000000000000000000000000000000000$		Collector-emitter		V _{GE} = 15V	T _{vj} =25°C	-	1.70	2.15		
$\frac{1}{10000000000000000000000000000000000$		saturation voltage	V _{CE(sat)}	I _C = 600A	T _{vj} =125°C	-	2.10	-	- V	
$ \frac{Internal gate resistance}{Capacitance} \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $					T _{vi} =150°C	-	2.25	-	-	
$\frac{1}{1} \frac{1}{1} \frac{1}$, Т _{vi} =175°С	-	2.35	-	-	
$\frac{1}{1} \frac{1}{1} \frac{1}$		Internal gate resistance	r _a	-	.,	-	1.67	-	Ω	
$\frac{c_{apacitance}}{c_{res}} = \frac{c_{oes}}{c_{res}} = V_{CE}=10V, V_{GE}=0V, f=1MHz} = \frac{2.1}{-0.47} = \frac{1}{0.47}$ Gate charge $\frac{Q_G}{Q_G} = V_{CC} = 900V, I_C = 600A \\ V_{GE} = -15 \rightarrow +15V = \frac{4.7}{-0.47} = \frac{1}{0.47} = \frac{1}{0.47}$ Forward voltage $\frac{V_F}{(terminal)} = \frac{V_F}{V_F} = \frac{V_F}{(terminal)} = \frac{V_F}{I_F} = 600A \\ V_F}{V_F} = \frac{V_F}{(chip)} = \frac{V_{CC} = 900V}{I_F} = \frac{1}{0.47} = 1$			-			-	75	-		
$\frac{1}{\text{Gate charge}} = \frac{C_{\text{res}}}{Q_{\text{G}}} = \frac{V_{\text{CC}} = 900\text{V}, I_{\text{C}} = 600\text{A}}{V_{\text{GE}} = -15 \rightarrow +15\text{V}} = \frac{4.7}{4.7} = \frac{1}{2.45}$ Forward voltage $\frac{V_{\text{F}}}{(\text{terminal})} = \frac{V_{\text{F}}}{V_{\text{F}}} = \frac{V_{\text{F}}}{(\text{terminal})} = \frac{V_{\text{F}}}{I_{\text{F}} = 600\text{A}} = \frac{T_{\text{V}} = 25^{\circ}\text{C}}{I_{\text{V}} = 125^{\circ}\text{C}} = \frac{1.70}{I_{\text{V}} = 125^{\circ}\text{C}} = \frac{1.70}{I_{\text{V}} = 125^{\circ}\text{C}} = \frac{1.80}{I_{\text{V}} = 100^{\circ}\text{C}} = \frac{1.80}{I_{\text{V}} = 125^{\circ}\text{C}} = \frac{1.80}{I_{$		Capacitance		$V_{\rm CC} = 900 \text{V}, I_{\rm C} = 600 \text{A}$		-	2.1	-	nF	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Cres			-		-		
$\frac{1}{4} \frac{1}{4} \frac{1}$		Gate charge				-	4.7	-	μC	
$\frac{V_{F}}{(chip)} = \frac{V_{F}}{(chip)} + \frac{T_{vj}=125^{\circ}C - 1.80 - 1}{T_{vj}=150^{\circ}C - 1.85 - 1} + \frac{T_{vj}=175^{\circ}C - 1.80 - 1}{T_{vj}=175^{\circ}C - 1.80 - 1} + \frac{T_{vj}=175^{\circ}C - 1.80 - 1}{T_{vj}=175^{\circ}C - 1.80 - 1} + \frac{T_{vj}=175^{\circ}C - 1.80 - 1}{T_{vj}=175^{\circ}C - 1.80 - 1} + \frac{T_{vj}=175^{\circ}C - 0.49 - 1}{T_{vj}=125^{\circ}C - 0.60 - 1} + \frac{T_{vj}=125^{\circ}C - 0.60 - 1}{T_{vj}=150^{\circ}C - 0.61 - 1} + \frac{T_{vj}=150^{\circ}C - 0.61 - 1}{T_{vj}=150^{\circ}C - 0.12 - 1} + \frac{T_{vj}=125^{\circ}C - 0.12 - 1}{T_{vj}=150^{\circ}C - 0.14 - 1} + \frac{T_{vj}=125^{\circ}C - 0.14 - 1}{T_{vj}=150^{\circ}C - 0.65 - 1} + \frac{T_{vj}=125^{\circ}C - 0.65 - 1}{T_{vj}=175^{\circ}C - 0.65 - 1} + \frac{T_{vj}=125^{\circ}C - 0.66 - 1}{T_{vj}=175^{\circ}C - 0.66 - 1} + \frac{T_{vj}=125^{\circ}C - 0.61 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=125^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66} - 1} + \frac{T_{vj}=150^{\circ}C - 0.66}{T_{vj}=150^{\circ}C - 0.$	ter		-	-	T _{vj} =25°C	-	2.45	2.90		
$\frac{V_{F}}{(chip)} = \frac{V_{F}}{(chip)} + \frac{T_{vj}=125^{\circ}C - 1.80 - 1}{T_{vj}=150^{\circ}C - 1.85 - 1} + \frac{T_{vj}=175^{\circ}C - 1.80 - 1}{T_{vj}=175^{\circ}C - 1.80 - 1} + \frac{T_{vj}=175^{\circ}C - 1.80 - 1}{T_{vj}=175^{\circ}C - 1.80 - 1} + \frac{T_{vj}=175^{\circ}C - 1.80 - 1}{T_{vj}=175^{\circ}C - 1.80 - 1} + \frac{T_{vj}=175^{\circ}C - 0.49 - 1}{T_{vj}=125^{\circ}C - 0.60 - 1} + \frac{T_{vj}=125^{\circ}C - 0.60 - 1}{T_{vj}=150^{\circ}C - 0.61 - 1} + \frac{T_{vj}=150^{\circ}C - 0.61 - 1}{T_{vj}=150^{\circ}C - 0.12 - 1} + \frac{T_{vj}=125^{\circ}C - 0.12 - 1}{T_{vj}=150^{\circ}C - 0.14 - 1} + \frac{T_{vj}=125^{\circ}C - 0.14 - 1}{T_{vj}=150^{\circ}C - 0.65 - 1} + \frac{T_{vj}=125^{\circ}C - 0.65 - 1}{T_{vj}=175^{\circ}C - 0.65 - 1} + \frac{T_{vj}=125^{\circ}C - 0.66 - 1}{T_{vj}=175^{\circ}C - 0.66 - 1} + \frac{T_{vj}=125^{\circ}C - 0.61 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=125^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66 - 1} + \frac{T_{vj}=150^{\circ}C - 0.66 - 1}{T_{vj}=150^{\circ}C - 0.66} - 1} + \frac{T_{vj}=150^{\circ}C - 0.66}{T_{vj}=150^{\circ}C - 0.$	ver			_	T _{vi} =25°C	-	1.70	2.15		
$\frac{(chip)}{t_{d(on)}} = \frac{\frac{1.85}{T_{y}=175^{\circ}\text{C}} - 1.85}{T_{y}=175^{\circ}\text{C}} - 1.80} - \frac{1.85}{T_{y}=175^{\circ}\text{C}} - 1.80}{T_{y}=175^{\circ}\text{C}} - 0.49} - \frac{1.80}{T_{y}=175^{\circ}\text{C}} - 0.49}{T_{y}=125^{\circ}\text{C}} - 0.60} - \frac{1.80}{T_{y}=125^{\circ}\text{C}} - 0.49}{T_{y}=125^{\circ}\text{C}} - 0.60} - \frac{1.80}{T_{y}=125^{\circ}\text{C}} - 0.61}{T_{y}=150^{\circ}\text{C}} - 0.61} - \frac{1.80}{T_{y}=125^{\circ}\text{C}} - 0.61}{T_{y}=150^{\circ}\text{C}} - 0.61} - \frac{1.80}{T_{y}=125^{\circ}\text{C}} - 0.62}{T_{y}=175^{\circ}\text{C}} - 0.62} - \frac{1.80}{T_{y}=175^{\circ}\text{C}} - 0.11}{T_{y}=125^{\circ}\text{C}} - 0.12} - \frac{1.80}{T_{y}=175^{\circ}\text{C}} - 0.12}{T_{y}=150^{\circ}\text{C}} - 0.14} - \frac{1.80}{T_{y}=125^{\circ}\text{C}} - 0.14}{T_{y}=125^{\circ}\text{C}} - 0.14} - \frac{1.80}{T_{y}=125^{\circ}\text{C}} - 0.14}{T_{y}=125^{\circ}\text{C}} - 0.63} - \frac{1.80}{T_{y}=125^{\circ}\text{C}} - 0.63}{T_{y}=125^{\circ}\text{C}} - 0.66} - \frac{1.80}{T_{y}=125^{\circ}\text{C}} - 0.66}{T_{y}=125^{\circ}\text{C}} - 0.66}{T_{y}=125^{\circ}\text{C}} - 0.66}{T_{y}=125^{\circ}\text{C}} - 0.66}{T_{y}=150^{\circ}\text{C}} - 0.66}{T$	<u>_</u>	Forward voltage			, Т _{vi} =125°С	-	1.80	-	- V	
Switching time (*1)					,	-	1.85	-	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	-		-		
$Switching time (*1) \left(t_{d(off)} \right) \\ t_{d(off)} \\ t_{f} \\ $		Switching time (*1)		$V_{\rm CC} = 900 V$		-		-	+	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4	$I_{\rm C}, I_{\rm F} = 600 {\rm A}$ $T_{\rm vi} = 125^{\circ} {\rm C}$ - 0.6	0.60	-				
$L_{s} = 35 \text{ nH}$ $L_{s} = 35 \text{ nH}$ $T_{vj}=25^{\circ}\text{C} - 0.11 - T_{vj}=125^{\circ}\text{C} - 0.12 - T_{vj}=150^{\circ}\text{C} - 0.14 - T_{vj}=175^{\circ}\text{C} - 0.14 - T_{vj}=175^{\circ}\text{C} - 0.58 - T_{vj}=125^{\circ}\text{C} - 0.63 - T_{vj}=125^{\circ}\text{C} - 0.63 - T_{vj}=125^{\circ}\text{C} - 0.65 - T_{vj}=125^{\circ}\text{C} - 0.66 - T_{vj}=125^{\circ}\text{C} - 0.66 - T_{vj}=125^{\circ}\text{C} - 0.66 - T_{vj}=125^{\circ}\text{C} - 0.61 - T_{vj}=150^{\circ}\text{C} - 0.61 - T_{vj}=150^{\circ}\text{C} - 0.66 - T_{vj}=10^{\circ}\text{C} - 0.66 - T_{vj}=10^{\circ}$			l d(on)	$V_{\rm GE}$ = +15/-15 V	T _{vj} =150°C	-	0.61	-		
$\frac{t_{r}}{t_{d(off)}} = \frac{t_{r}}{t_{r}} = \frac{T_{vj}=125^{\circ}\text{C} - 0.12 - T_{vj}=150^{\circ}\text{C} - 0.13 - T_{vj}=175^{\circ}\text{C} - 0.14 - T_{vj}=175^{\circ}\text{C} - 0.14 - T_{vj}=125^{\circ}\text{C} - 0.58 - T_{vj}=125^{\circ}\text{C} - 0.63 - T_{vj}=125^{\circ}\text{C} - 0.65 - T_{vj}=150^{\circ}\text{C} - 0.66 - T_{vj}=175^{\circ}\text{C} - 0.66 - T_{vj}=175^{\circ}\text{C} - 0.66 - T_{vj}=125^{\circ}\text{C} - 0.42 - T_{vj}=125^{\circ}\text{C} - 0.61 - T_{vj}=125^{\circ}\text{C} - 0.61 - T_{vj}=150^{\circ}\text{C} - 0.66 - T_{vj}=150^{\circ}\text{C} - 0.66 - T_{vj}=150^{\circ}\text{C} - 0.66 - T_{vj}=150^{\circ}\text{C} - 0.66 - T_{vj}=125^{\circ}\text{C} - 0.66 - T_{vj}=100^{\circ}\text{C} - 0.60 - T_{vj}=100^{\circ}\text{C} - 0.60 - T_{vj}=100^{\circ$				-		-	0.62	-		
Switching time (*1) t_r $T_{vj}=150^{\circ}C$ - 0.13 - $T_{vj}=175^{\circ}C$ - 0.14 - $T_{vj}=175^{\circ}C$ - 0.58 - $T_{vj}=125^{\circ}C$ - 0.63 - $T_{vj}=125^{\circ}C$ - 0.63 - $T_{vj}=125^{\circ}C$ - 0.65 - $T_{vj}=150^{\circ}C$ - 0.66 - $T_{vj}=175^{\circ}C$ - 0.66 - $T_{vj}=25^{\circ}C$ - 0.61 - $T_{vj}=150^{\circ}C$ - 0.61 - $T_{vj}=150^{\circ}C$ - 0.66 - $T_{vj}=150^{\circ}$			t.	L _S = 35 nH		-	0.11	-		
Switching time (*1)						-		-		
$t_{d(off)}$ $t_{d(off)}$ $t_{d(off)}$ t_{f} $T_{vj}=25^{\circ}C - 0.58 - T_{vj}=125^{\circ}C - 0.63 - T_{vj}=150^{\circ}C - 0.65 - T_{vj}=175^{\circ}C - 0.66 - T_{vj}=175^{\circ}C - 0.42 - T_{vj}=125^{\circ}C - 0.42 - T_{vj}=125^{\circ}C - 0.61 - T_{vj}=125^{\circ}C - 0.61 - T_{vj}=150^{\circ}C - 0.66 - T_{vj}=10^{\circ}C - 0.66 - T$			-1		<i>T</i> _{vj} =150°С	-		-		
$\frac{t_{d(off)}}{t_{f}}$ $\frac{T_{vj}=125^{\circ}\text{C} - 0.63 - T_{vj}=150^{\circ}\text{C} - 0.65 - T_{vj}=175^{\circ}\text{C} - 0.66 - T_{vj}=175^{\circ}\text{C} - 0.42 - T_{vj}=25^{\circ}\text{C} - 0.42 - T_{vj}=125^{\circ}\text{C} - 0.61 - T_{vj}=125^{\circ}\text{C} - 0.61 - T_{vj}=150^{\circ}\text{C} - 0.66 - T_{v$					Т _{vj} =175°С	-		-		
$\frac{T_{vj}=150^{\circ}\text{C} - 0.65 - T_{vj}=175^{\circ}\text{C}}{T_{vj}=175^{\circ}\text{C} - 0.42 - T_{vj}=25^{\circ}\text{C} - 0.42 - T_{vj}=125^{\circ}\text{C} - 0.61 - T_{vj}=125^{\circ}\text{C} - 0.61 - T_{vj}=150^{\circ}\text{C} - 0.66 - T_{vj}=150^{\circ}\text{C} - 0.65 - T_{vj}=$						-		-		
$t_{\rm f} = \frac{T_{\rm ej} = 150^{\circ} \rm C}{T_{\rm ej} = 175^{\circ} \rm C} - \frac{0.65}{0.66} - \frac{1}{T_{\rm ej} = 175^{\circ} \rm C} - \frac{0.66}{0.42} - \frac{1}{T_{\rm ej} = 125^{\circ} \rm C} - \frac{0.42}{0.61} - \frac{1}{T_{\rm ej} = 125^{\circ} \rm C} - \frac{0.61}{0.66} - \frac{1}{T_{\rm ej} = 150^{\circ} \rm C} - \frac{0.66}{0.66} - \frac{1}{T_{\rm ej} = 150^{\circ} \rm C} - \frac{1}{0.66} - \frac{1}{T_{\rm ej} = 10^{\circ} \rm C} - \frac{1}{0.66} - \frac{1}{0.66} - \frac{1}{0.66} - \frac{1}{0.66} -$			$t_{d(off)}$			-			μs	
$t_{\rm f} \qquad \qquad \frac{T_{\rm vj}=25^{\circ}{\rm C} - 0.42 - T_{\rm vj}}{T_{\rm vj}=125^{\circ}{\rm C} - 0.61 - T_{\rm vj}}$					$T_{vj}=150^{\circ}C$	-		-	_	
$t_{\rm f}$ $T_{\rm vj}=125^{\circ}{\rm C}$ - 0.61 - $T_{\rm vj}=150^{\circ}{\rm C}$ - 0.66 -					$T_{vj} = 175 \text{ C}$	-		-	_	
$T_{\rm y}=150^{\circ}{\rm C}$ - 0.66 -					$T_{vi} = 125^{\circ}C$	-		-		
$T_{y}=175^{\circ}C$ - 0.71 -			t _f		T _{vi} =150°C				1	
					T _{vi} =175°C	-	0.71	-		
$T_{\rm vi}=25^{\circ}{\rm C}$ - 0.30 -					$T_{\rm vi}=25^{\circ}\rm C$	-		-		
Reverse recovery time $t_{\rm rr}$ $T_{\rm v}=125^{\circ}{\rm C}$ - 0.41 -		Reverse recovery time	t _{rr}		Γ _{vj} =125°C	-			4	
$T_{vj}=150^{\circ}C$ - 0.46 - $T_{vj}=175^{\circ}C$ - 0.55 -									-	

(*1) Turn on time $(t_{on}) = t_{d(on)} + t_r$, Turn off time $(t_{off}) = t_{d(off)} + t_f$

IGBT Modules

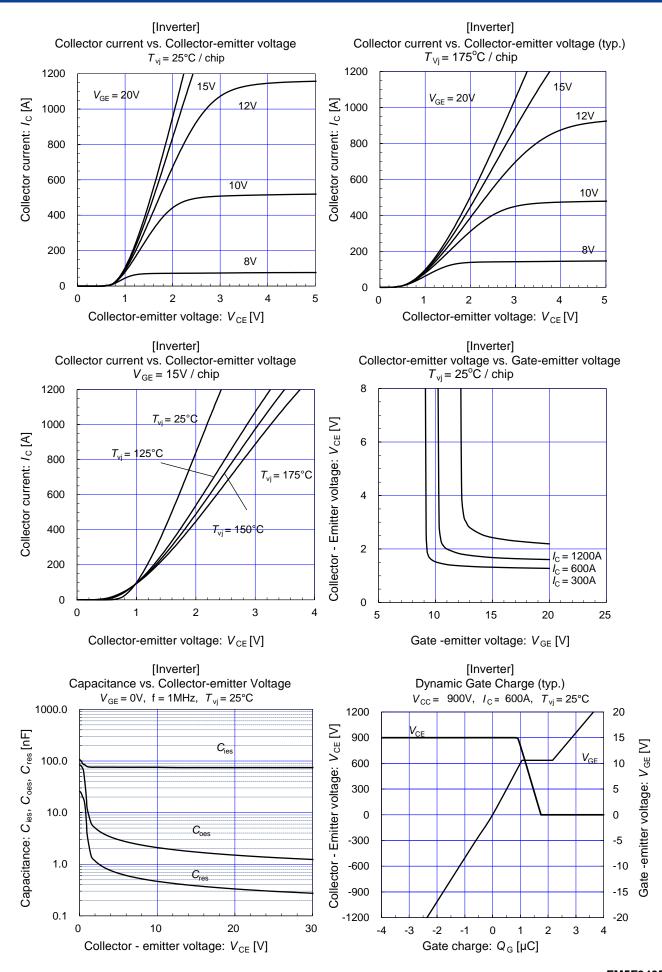
Itoms		Symbols	Conditions			Characteristics			Units	
	Items	Symbols				min.	typ.	max.	Units	
			$V_{\rm CC} =$	900V	T _{vj} =25°C	-	152	-		
	Switching loss (per pulse)	Eon	1 _C , 1 _F =	= 600A	T _{vj} =125°C T _{vj} =150°C	-	194	-		
		L on	$V_{GE} =$	+15/-15 V	T _{vj} =150°C	-	212	-]	
			$R_{\rm G} =$	±1Ω	T _{vj} =175°C	-	241	-	mJ	
			$L_{\rm S} =$	35 nH	T _{vj} =25°C	-	140	-		
Inverter		_			T _{vj} =125°C	-	177	-		
			Eoff			<i>T</i> _{vj} =150°C	-	188	-	mJ
					T _{vj} =175°C	-	198	-]	
					T _{vj} =25°C	-	70	-		
		Err			<i>T</i> _{vj} =125°C	-	128	-		
		L rr			T _{vj} =150°C	-	143	-		
					T _{vj} =175°C	-	165	-		
tor	Resistance	R	<i>T</i> =	25°C		-	5000	-	Ω	
nis			<i>T</i> =	100°C		465	495	520	32	
Thermistor	B value	В	<i>T</i> =	25/ 50°C		3305	3375	3450	к	

■ Electrical characteristics (at *T*_{vj}= 25°C unless otherwise specified)

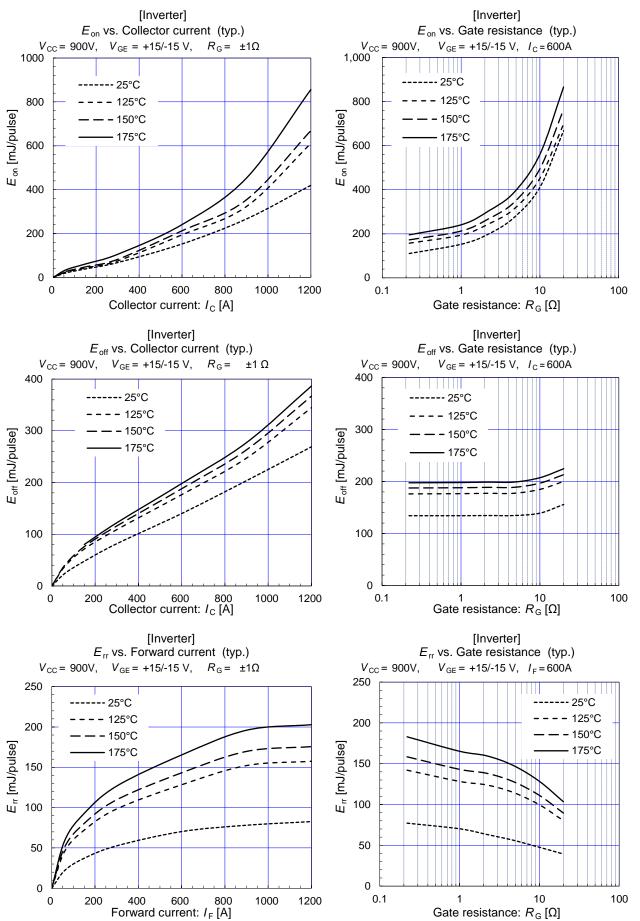
NOTICE:

The external gate resistance (R_G) shown above is one of our recommended value for the purpose of minimum switching loss. However the optimum R_G depends on circuit configuration and/or environment. We recommend that the R_G has to be carefully chosen based on consideration if IGBT module matches design criteria, for example, switching loss, EMC/EMI, spike voltage, surge current and no unexpected oscillation and so on.

Thermal resistance characteristics

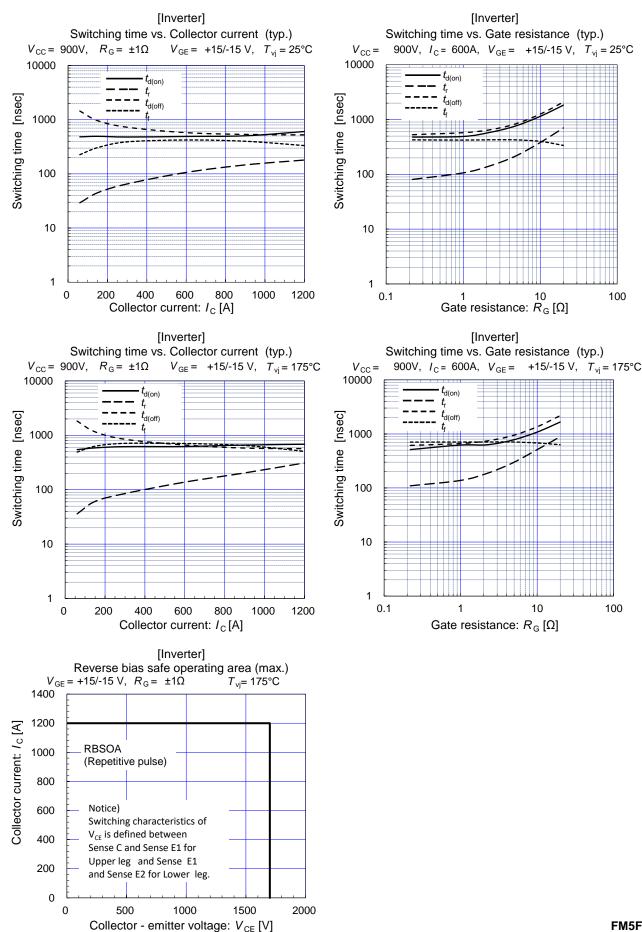

Items	Symbols	Conditions	Ch	Units		
items	Symbols	Conditions	min.	typ.	max.	Units
Thermal resistance junction to	P	Inverter IGBT	-	-	0.039	
case(1 device)	$R_{\rm th(j-c)}$	Inverter FWD	-	-	0.055	к/w
Thermal resistance case to	$R_{\rm th(c-s)}$	with 1 W/(m·K) thermal grease	_	0.0167	_	10,00
heatsink(1 IGBT+1 FWD) (*1)	th(c-s)		-	0.0107	-	

(*1) This is the value which is defined mounting on the additional heatsink with thermal grease.

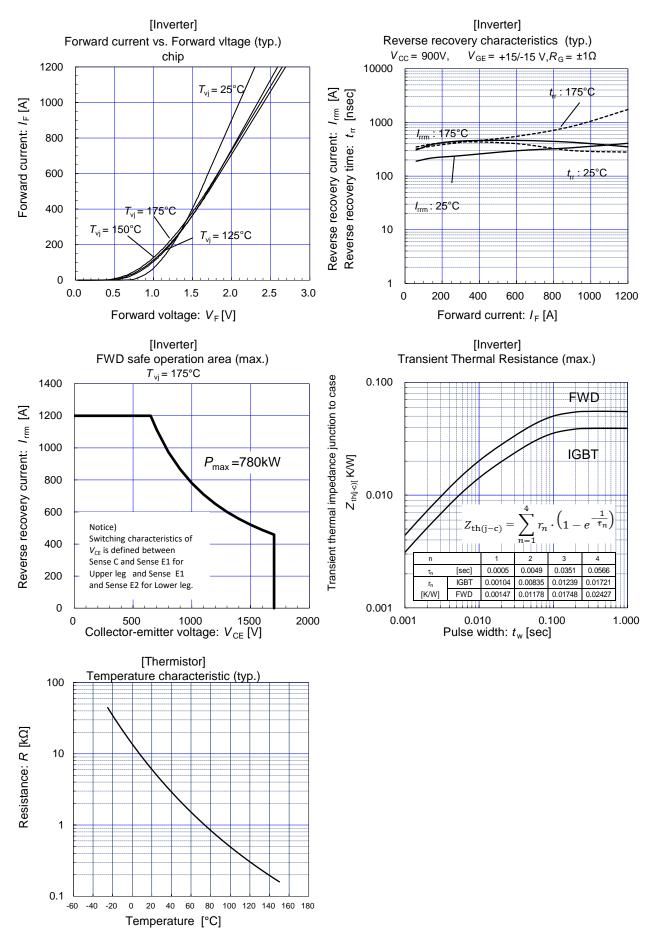

F Fuji Electric

IGBT Modules

IGBT Modules


FM5F9405 2019/05

Innovating Energy Technology


2MBI600XNF170-50

IGBT Modules

IGBT Modules

	—— Warnings ————
•	oduct specifications, characteristics, data, materials, and structures as of 5/2019. ange without notice for specification changes or other reasons. When using a product listed ain the latest specifications.
either express or implied, unde Co., Ltd. is (or shall be deeme	this Catalog exemplify the use of Fuji's products for your reference only. No right or license, er any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric d) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or ment or alleged infringement of other's intellectual property rights which may arise from the bed herein.
may become faulty. When usin safety measures to prevent the	td. is enhancing product quality and reliability, a small percentage of semiconductor products ng Fuji Electric semiconductor products in your equipment, you are requested to take adequate e equipment from causing a physical injury, fire, or other problem if any of the products become take your design fail-safe, flame retardant, and free of malfunction.
normal reliability requirements · Computers · OA equipment	his Catalog are intended for use in the following electronic and electrical equipment which has ·Communications equipment (terminal devices) ·Measurement equipment equipment ·Electrical home appliances ·Personal equipment ·Industrial robots etc.
listed below, it is imperative to equipment, take adequate mea product incorporated in the equi- Transportation equipment (m Traffic-signal control equipment	in this Catalog for equipment requiring higher reliability than normal, such as for the equipment contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such asures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's uipment becomes faulty. ounted on cars and ships) ·Trunk communications equipment ent ·Gas leakage detectors with an auto-shut-off feature sponding to disasters and anti-burglary devices ·Safety devices ·Medical equipment
strategic equipment (without lin	Catalog for the equipment requiring strict reliability such as the following and equivalents to mitation). ic equipment ·Nuclear control equipment ·Submarine repeater equipment
	-uji Electric Co., Ltd. All rights reserved. a reproduced in any form or by any means without the express permission of Fuji Electric Co., Lt
	but any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in at forth berein