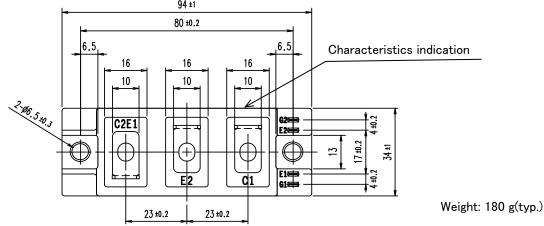
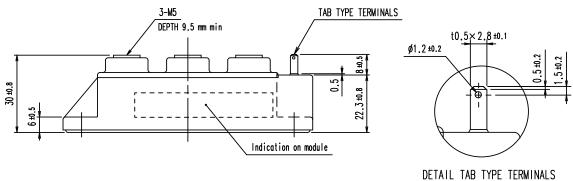


IGBT Modules

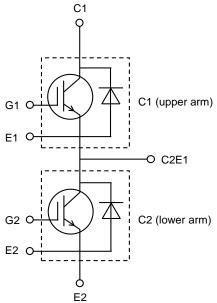
Power Module (X series) 650V / 150A / 2-in-1 package

■ Features


Low $V_{\rm CE(sat)}$ High speed switching Low Inductance Module structure


■ Applications

Inverter for Motor Drives, AC and DC Servo Drives Uniterruptible Power Supply Systems, Industrial machines, such as Welding machines



■ Outline drawing (Unit : mm)

■ Equivalent Circuit

IGBT Modules

■ Absolute Maximum Ratings (at T_C= 25°C unless otherwise specified)

		Items	Symbols	Cond	litions	Maximum Ratings	Units
	Collector-emitter voltage,gate-emitter short-circuited		V _{CES}			650	V
	Gate-emitter voltage,collector-emitter short-circuited		V_{GES}			±20	V
-	Collecto	r current	I _C	Continuous	T _C =100°C	150	
Inverter	Repetitive peak collector current		I _{CRM}	1ms		300	A
Forward current		I _F			150] A	
	Repetitive peak forward current		I _{FRM}	1ms		300	
	Total power dissipation		P _{tot}	1 device		500	W
	Virtual junction temperature		$T_{\rm vj}$			175	
	Operatir	ng virtual junction temperature	$T_{\rm vjop}$			175	°C
Ca	se tempe	erature	Tc			125	- 10
Storage temperature		${\cal T}_{ m stg}$			-40 ~ 125		
Isolation voltage between terminals and copper base (*1)		$V_{\rm isol}$	AC: 1min.		4000	Vrms	
Мо	Mounting torque of screws to heatsink(*2)		Ms	M5		5.0	NI mr
Mounting torque of screws to terminals(*3)		$M_{\rm t}$	M5		5.0	- N·m	

^(*1) All terminals should be connected together during the test.

^(*2) Recommendable Value: 3.0 ~ 5.0 N·m (M5 or M6)

^(*3) Recommendable Value: 2.5 ~ 5.0 N·m (M5)

■ Electrical characteristics (at T_{vj} = 25°C unless otherwise specified)

		lt	Conditions		Characteristics			Units	
		Items	Symbols	Conditions		min.	typ.	max.	Units
		current,gate-emitter short-	I _{CES}			-	-	50	μA
$ \frac{V_{\text{CE(sat)}}}{(\text{terminal})} = \frac{V_{\text{CE(sat)}}}{(\text{terminal})} = \frac{V_{\text{CE(sat)}}}{(\text{terminal})} = \frac{V_{\text{CE(sat)}}}{V_{\text{CE(sat)}}} = \frac{V_{\text{CE(sat)}}}{(\text{chip})} = \frac{V_{\text{CE(sat)}}}{V_{\text{CE}}} = \frac{150 \text{M}}{V_{\text{CE}}} = \frac{150 \text{M}}{V_{\text{T}}} = \frac{150 \text{C}}{V_{\text{T}}} = \frac{1.45}{1.90} = \frac{1.75}{1.45} = \frac{1.90}{1.75} = \frac{1.45}{1.90} = \frac{1.75}{1.90} = \frac{1.75}$		_	I _{GES}	V _{CE} =0V, V _{GE} =±20V		-	-	100	nA
			$V_{\rm GE(th)}$			6.0	6.5	7.0	V
$\frac{\sqrt{V_{CE(asi)}}}{(chip)} = \frac{V_{CE(asi)}}{(chip)} \begin{cases} V_{CE(asi)} \\ (chip) \end{cases} = \frac{150A}{T_{vj}=150^{\circ}C} - \frac{1.45}{1.50} - \frac{V_{V_{CE}(asi)}}{T_{vj}=175^{\circ}C} - \frac{1.45}{1.50} - \frac{V_{V_{CE}(asi)}}{T_{vj}=175^{\circ}C} - \frac{1.45}{1.50} - \frac{V_{V_{CE}(asi)}}{T_{vj}=175^{\circ}C} - \frac{1.55}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=175^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - D_{V_{$					T _{vj} =25°C	-	1.45	1.90	
$\frac{\sqrt{V_{CE(asi)}}}{(chip)} = \frac{V_{CE(asi)}}{(chip)} \begin{cases} V_{CE(asi)} \\ (chip) \end{cases} = \frac{150A}{T_{vj}=150^{\circ}C} - \frac{1.45}{1.50} - \frac{V_{V_{CE}(asi)}}{T_{vj}=175^{\circ}C} - \frac{1.45}{1.50} - \frac{V_{V_{CE}(asi)}}{T_{vj}=175^{\circ}C} - \frac{1.45}{1.50} - \frac{V_{V_{CE}(asi)}}{T_{vj}=175^{\circ}C} - \frac{1.55}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=175^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{1.50} - \frac{D_{V_{CE}(asi)}}{T_{vj}=15^{\circ}C} - \frac{D_{V_{CE}(asi)}}{1.50} - D_{V_{$		Collector-emitter		V _{GF} = 15V	T _{vi} =25°C	-	1.30	1.75	1 . <i>.</i>
$\frac{\text{production}}{\text{linternal gate resistance}} = \frac{r_0}{r_0} - \frac{1.50^{\circ}C}{T_{\psi}=175^{\circ}C} - \frac{1.50}{1.55} $			$V_{CE(sat)}$			-	1.45	-	7 V
$\frac{\sqrt{V_{cl}} = 175^{\circ}C}{ Input capacitance} = \frac{r_{cl}}{C_{los}} - \frac{\sqrt{V_{cl}} = 10V, \ V_{cl}}{ Input capacitance} - \frac{1.55}{0.7} - \frac{1.77}{0.7} - 1.77$						-	1.50	-	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,			-	1.55	-	
$ \frac{1}{\text{Pout capacitance}} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Internal gate resistance	r _a	-	V)	-		-	Ω
$ \frac{\text{Dutput capacitance}}{\text{Reverse transfer capacitance}} = \frac{C_{\text{oes}}}{C_{\text{res}}} \\ V_{\text{CE}} = 10V, \ V_{\text{GE}} = 0V, \ I_{\text{C}} = 150A \\ V_{\text{GE}} = .15 \rightarrow +15V \\ V_{\text{GE}} = 0V \\ V_{\text{F}} = 150A \\ V_{\text{F}} = 150A \\ V_{\text{F}} = 150A \\ V_{\text{F}} = 150A \\ V_{\text{CE}} = 300V \\ V_{\text{F}} = 150A \\ V_{\text{F}} = $						-	17	-	
$ \begin{array}{ c c c c c c } \hline \text{Reverse transfer capacitance} & C_{\text{res}} \\ \hline \text{Gate charge} & Q_{\text{G}} & V_{\text{CG}} = 300\text{V}, I_{\text{C}} = 150\text{A} \\ \hline & V_{\text{F}} \\ \text{(terminal)} & V_{\text{F}} \\ \text{(terminal)} & V_{\text{F}} \\ \text{(chip)} & \hline & V_{\text{F}} \\ \hline & V_{\text{F}} \\ \text{(chip)} & \hline & V_{\text{CG}} = 300\text{V}, I_{\text{C}} = 150\text{A} \\ \hline & V_{\text{F}} \\ \text{(chip)} & \hline & V_{\text{F}} \\ \hline & V_{\text{F}} \\ \text{(chip)} & \hline & V_{\text{C}} = 150\text{A} \\ \hline & V_{\text{F}} \\ \text{(chip)} & \hline & V_{\text{C}} = 20\text{V} \\ \hline & V_{\text{F}} \\ \text{(chip)} & \hline & V_{\text{C}} = 20\text{V} \\ \hline & V_{\text{F}} \\ \text{(chip)} & \hline & V_{\text{C}} = 300\text{V} \\ \hline & V_{\text{F}} \\ \hline & V_{\text{C}} = 300\text{V} \\ & V_{\text{C}} = 300\text{V} \\ & V_{\text{C}} = 300\text{V} \\ & V_{\text{C}} = 150\text{A} \\ \hline & V_{\text{C}} = 300\text{V} \\ & V_{\text{C}} = 150\text{A} \\ \hline & V_{\text{C}} = 150\text{A} \\ & V_{\text{C}} = 1$		Output capacitance		V_{CE} =10V, V_{GE} =0V, f =	1MHz	-	0.7	-	nF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse transfer capacitance				-	0.23	-	1
Forward voltage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Gate charge			= 150A	-	1.2	-	μC
Forward voltage $ \begin{array}{c} V_F \\ (\text{chip}) \end{array} \begin{array}{c} V_F \\ (\text{chip}) \end{array} \begin{array}{c} V_C \\ (\text{chip}) \end{array} \begin{array}{c$	/erter				T _{vj} =25°C	,	1.70	2.15	
$V_{F} \text{ (chip)} \\ V_{Chip} \text{ (chip)} \\ V_{CC} \text{ (chip)} \\ V_{CC} = 300V \\ I_{C}, I_{F} = 150A \\ V_{GE} = +15/-15V \\ R_{G} = 9.1 \Omega \\ L_{S} = 30 \text{ nH} \\ V_{I} = 150^{\circ}C \\ V_{I} = $	2				T _{vj} =25°C	-	1.55	2.00	1 ,,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Forward Voltage			T _{vj} =125°C	-	1.50	-	V
Turn-on delay time(*1) $t_{\rm d(on)} = t_{\rm $					T _{vi} =150°C	-	1.50	-	
Turn-on delay time(*1) $t_{\rm d(on)} = t_{\rm $,	-	1.45	-	
Turn-on delay time(*1) $t_{\rm d(on)}$ t						-	0.31	-	
$R_{\rm G} = 9.1 \Omega \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 175 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 175 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 175 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 175 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 175 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 30 {\rm nH} \\ T_{\rm V} = 125 ^{\circ}{\rm C} \\ L_{\rm S} = 125 ^{\circ}$		T				-	0.35	-	
Rise time(*1) $t_{\rm r} = \frac{1}{T_{\rm vj} = 125^{\circ} \rm C} - \frac{0.10}{0.12} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.12}{0.12} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.12}{0.13} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.13}{0.38} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.35}{0.38} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.38}{0.38} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.38}{0.38} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.12}{0.39} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.12}{0.12} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.12}{0.19} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.12}{0.29} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.20}{0.29} - \frac{1}{T_{\rm vj} = 150^{\circ} \rm C} - \frac{0.29}{0.29} -$		Turn-on delay time("1)	l d(on)	$V_{GE} = +15/-15V$	<i>T</i> _{∨j} =150°C	-	0.36	-	
Rise time(*1) $t_{\rm r} = \frac{T_{\rm vj} = 125^{\circ}{\rm C} - 0.12}{T_{\rm vj} = 150^{\circ}{\rm C} - 0.12} - \frac{T_{\rm vj} = 175^{\circ}{\rm C}}{T_{\rm vj} = 175^{\circ}{\rm C} - 0.13} - \frac{T_{\rm vj} = 25^{\circ}{\rm C} - 0.35}{T_{\rm vj} = 125^{\circ}{\rm C} - 0.38} - \frac{T_{\rm vj} = 125^{\circ}{\rm C} - 0.38}{T_{\rm vj} = 150^{\circ}{\rm C} - 0.38} - \frac{U_{\rm vj}}{T_{\rm vj} = 150^{\circ}{\rm C} - 0.39} - \frac{U_{\rm vj}}{T_{\rm vj} = 125^{\circ}{\rm C} - 0.12} - \frac{U_{\rm vj}}{T_{\rm vj} = 125^{\circ}{\rm C} - 0.19} - \frac{U_{\rm vj}}{T_{\rm vj} = 125^{\circ}{\rm C} - 0.15} - \frac{U_{\rm vj}}{T_{\rm vj} = 125^{\circ}{\rm C} - 0.15} - \frac{U_{\rm vj}}{T_{\rm vj} = 125^{\circ}{\rm C} - 0.29} - U_{\rm v$				$R_G = 9.1 \Omega$		-	0.36	-	
Rise time("1) $t_{r} = \frac{T_{v_{j}} = 150^{\circ}\text{C}}{T_{v_{j}} = 175^{\circ}\text{C}} - \frac{0.12}{0.13} - \frac{1}{T_{v_{j}} = 175^{\circ}\text{C}} - \frac{0.35}{0.35} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.38}{0.38} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.38}{0.38} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.38}{0.39} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.39}{0.12} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.12}{0.18} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.18}{0.19} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.22}{0.22} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.22}{0.26} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.26}{0.29} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - \frac{0.29}{0.29} - \frac{1}{T_{v_{j}} = 125^{\circ}\text{C}} - $				$L_{\rm S} = 30 \rm nH$	$T_{\rm vj}$ =25°C	-	0.10	-	
$Turn-off \ delay \ time(*1)$ $t_{d(off)}$		Rise time(*1)	+			-	0.12	-	
Turn-off delay time(*1) $t_{\text{d(off)}}$ $t_{d(off)}$ $t_{\text{d(off)}}$ $t_{\text{d(off)}}$ $t_{\text{d(off)}}$ $t_{d($		ruse time(1)	٠r		<i>T</i> _{∨j} =150°C	-		-	
Turn-off delay time(*1) $t_{\text{d(off)}} = t_{\text{d(off)}} = t_{\text$						-		-	<u> </u>
Fall time(*1) $t_{\rm f} = \frac{T_{\rm vj} = 150^{\circ} \text{C}}{T_{\rm vj} = 175^{\circ} \text{C}} - \frac{0.38}{0.39} - \frac{1}{0.39}$ $T_{\rm vj} = 25^{\circ} \text{C} - \frac{0.12}{0.12} - \frac{1}{0.39}$ $T_{\rm vj} = 125^{\circ} \text{C} - \frac{0.18}{0.18} - \frac{1}{0.39}$ $T_{\rm vj} = 150^{\circ} \text{C} - \frac{0.19}{0.19} - \frac{1}{0.39}$ $T_{\rm vj} = 175^{\circ} \text{C} - \frac{0.22}{0.22} - \frac{1}{0.39}$ Reverse recovery time $t_{\rm rr} = \frac{T_{\rm vj} = 125^{\circ} \text{C}}{T_{\rm vj} = 150^{\circ} \text{C}} - \frac{0.26}{0.29} - \frac{1}{0.29}$						-		-	
Fall time(*1) $t_{\rm f} = \begin{bmatrix} T_{\rm vj} = 130 & {\rm C} & - & 0.38 & - \\ T_{\rm vj} = 175 ^{\rm o}{\rm C} & - & 0.39 & - \\ T_{\rm vj} = 25 ^{\rm o}{\rm C} & - & 0.12 & - \\ T_{\rm vj} = 125 ^{\rm o}{\rm C} & - & 0.18 & - \\ T_{\rm vj} = 150 ^{\rm o}{\rm C} & - & 0.19 & - \\ T_{\rm vj} = 175 ^{\rm o}{\rm C} & - & 0.22 & - \\ T_{\rm vj} = 25 ^{\rm o}{\rm C} & - & 0.15 & - \\ T_{\rm vj} = 125 ^{\rm o}{\rm C} & - & 0.26 & - \\ T_{\rm vj} = 150 ^{\rm o}{\rm C} & - & 0.29 & - \\ \end{bmatrix}$		Turn-off delay time(*1)	$t_{d(off)}$		I _{vj} =125°C				μs
Fall time(*1) $t_{\rm f} = \frac{T_{\rm vj} = 25^{\circ} \text{C}}{T_{\rm vj} = 125^{\circ} \text{C}} - \frac{0.12}{0.18} - \frac{1}{T_{\rm vj}} = \frac{150^{\circ} \text{C}}{T_{\rm vj}} - \frac{0.19}{0.19} - \frac{1}{T_{\rm vj}} = \frac{175^{\circ} \text{C}}{T_{\rm vj}} - \frac{0.22}{0.15} - \frac{1}{T_{\rm vj}} = \frac{175^{\circ} \text{C}}{T_{\rm vj}} - \frac{0.26}{0.29} - \frac{1}{T_{\rm vj}} = \frac{175^{\circ} \text{C}}{0.29} - \frac{0.29}{0.29} - \frac{1}{T_{\rm vj}} = \frac{150^{\circ} \text{C}}{0.29} - \frac{0.29}{0.29} - \frac{1}{T_{\rm vj}} = \frac{1}{T_{\rm vj}} $		·			T =150°C			-	
Fall time(*1) $t_{\rm f} = \frac{T_{\rm vj} = 125^{\circ}\text{C}}{T_{\rm vj} = 150^{\circ}\text{C}} - \frac{0.18}{0.19} - \frac{1}{T_{\rm vj}} = \frac{175^{\circ}\text{C}}{1.00} - \frac{0.19}{0.22} - \frac{1}{T_{\rm vj}} = \frac{175^{\circ}\text{C}}{0.15} - \frac{0.15}{0.26} - \frac{1}{T_{\rm vj}} = \frac{175^{\circ}\text{C}}{0.29} - \frac{0.26}{0.29} - \frac{1}{T_{\rm vj}} = \frac{175^{\circ}\text{C}}{0.29} - \frac{0.29}{0.29} - \frac{1}{T_{\rm vj}} = \frac{175^{\circ}\text{C}}{0.29} - \frac{1}{T_{\rm vj}} = \frac{175^{\circ}\text{C}}{$			t _f	-	$T_{vi} = 25^{\circ}C$			-	
Reverse recovery time $t_{\rm rr} = t_{\rm rr} $		Fall time (*4)			T _{vi} =125°C				†
Reverse recovery time $t_{\rm rr}$ $T_{\rm vj} = 25^{\circ}{\rm C}$ - 0.15 - $T_{\rm vj} = 125^{\circ}{\rm C}$ - 0.26 - $T_{\rm vj} = 150^{\circ}{\rm C}$ - 0.29 -		rali time(*1)			T _{vi} =150°C	-	0.19	-]
Reverse recovery time $t_{\rm rr}$ $T_{\rm vj}$ =125°C - 0.26 - $T_{\rm vj}$ =150°C - 0.29 -					$T_{\text{vj}} = 175^{\circ}\text{C}$	-		-	↓
Reverse recovery lime t_{rr} T_{vj} =150°C - 0.29 -			t _{rr}		I _{vj} =25°C			-	4
		Reverse recovery time							-
110-110 0 1 0.00 1 = 1					$T_{vi} = 175^{\circ} \text{C}$	-	0.29	-	1

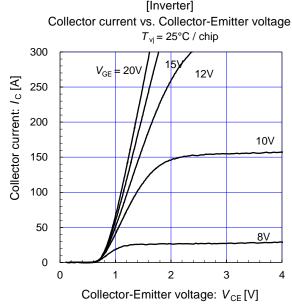
^(*1) Turn-on time $(t_{on}) = t_{d(on)} + t_r$, Turn-off time $(t_{off}) = t_{d(off)} + t_f$

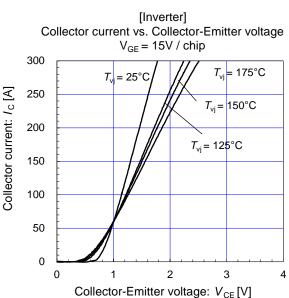
IGBT Modules

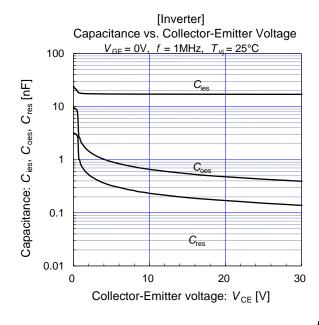
■ Electrical characteristics (at T_{vj}= 25°C unless otherwise specified)

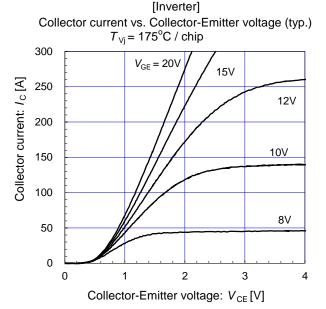
	Items	Symbols	Conditions		Characteristics			Units
	items	Symbols			min.	typ.	max.	Ullits
			$V_{\rm CC} = 300 \text{V}$	T _{vj} =25°C	-	4.1	-	
	Turn on onorgy	E	$I_{\rm C}$, $I_{\rm F} = 150$ A	T _{vj} =125°C	-	6.4	-	
	Turn-on energy	E _{on}	$V_{GE} = +15/-15V$	T _{vj} =150°C	-	7.0	-	
			$R_{\rm G} = 9.1 \Omega$	T _{vj} =175°C	-	7.8	-	
			$L_{\rm S} = 30 \rm nH$	$T_{\rm vj}$ =25°C	-	4.0	-	
ē	Turn-off energy	E _{off}		T _{vj} =125°C	-	5.3	-	
Inverter				T _{vj} =150°C	-	5.6	-	mJ
드				T _{vj} =175°C	-	5.9	-	
	Reverse recovery energy	En		T _{vj} =25°C	-	0.5	-	
				T _{vj} =125°C	-	0.9	-	
				T _{vj} =150°C	-	1.0	-	
				T _{vj} =175°C	-	1.2	-	

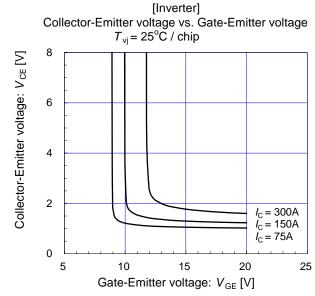
NOTICE:

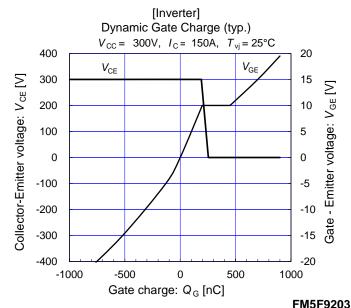

The external gate resistance ($R_{\rm G}$) shown above is one of our recommended value for the purpose of minimum switching loss. However the optimum $R_{\rm G}$ depends on circuit configuration and/or environment. We recommend that the $R_{\rm G}$ has to be carefully chosen based on consideration if IGBT module matches design criteria, for example, switching loss, EMC/EMI, spike voltage, surge current and no unexpected oscillation and so on.

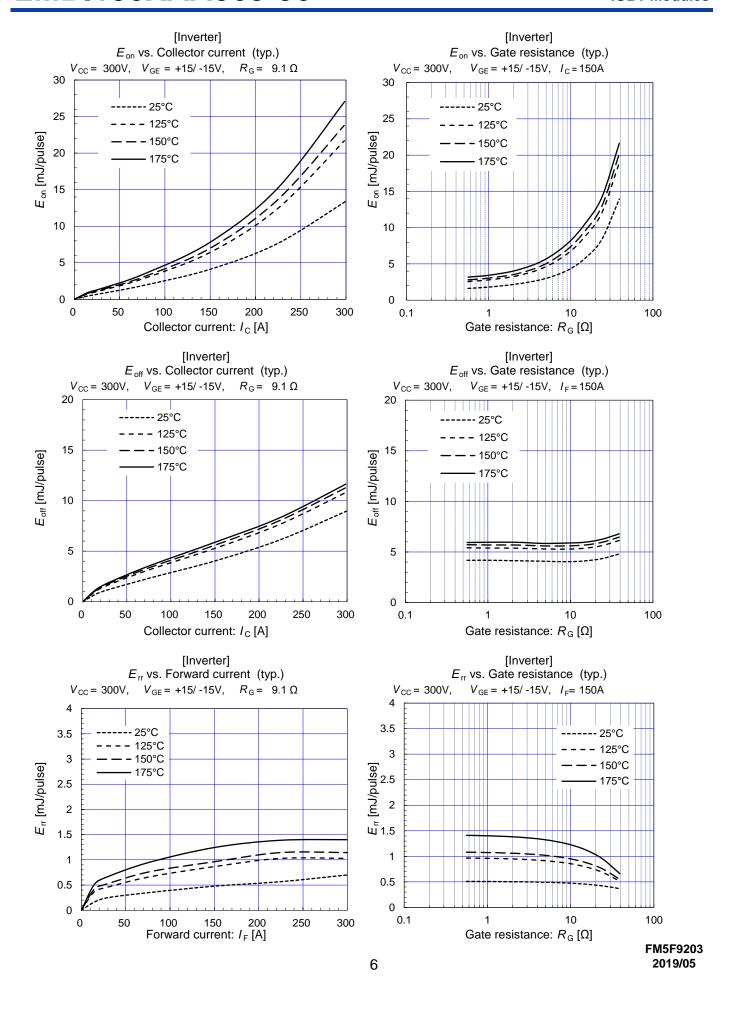

■Thermal resistance characteristics

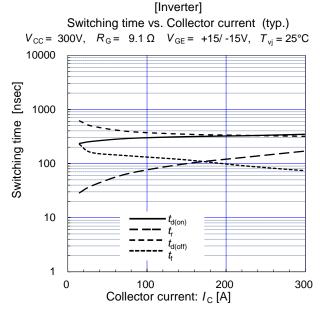

	Symbols	Conditions	Characteristics			ne
	Syllibols	Conditions	min.	typ.	max.	ns
Thermal resistance junction to case	$R_{th(j-c)}$	IGBT	-	-	0.300	
(1device)	tn(J-c)	FWD	-	-	0.569	K/W
Thermal resistance case to heatsink (1IGBT + 1FWD) (*1)	R _{th(c-s)}	with 1 W/(m·K) thermal grease	-	0.050	-	1000

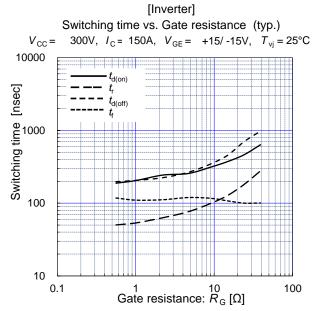

^(*1) This is the value which is defined mounting on the additional heatsink with thermal grease.

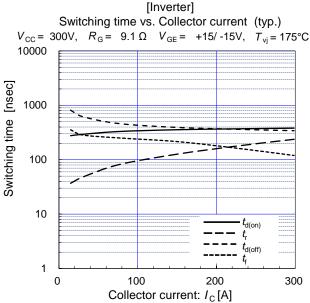


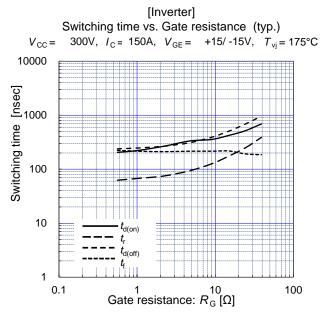


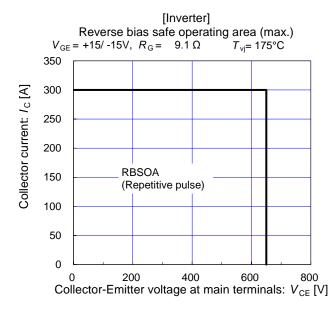


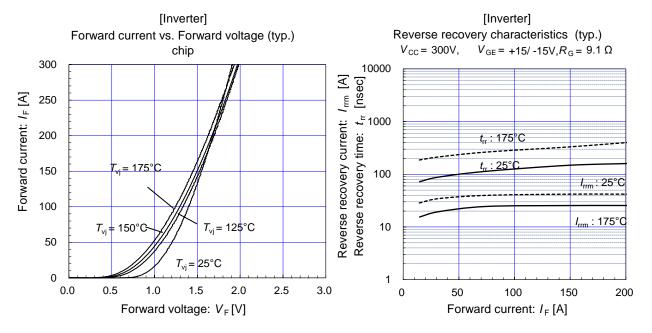


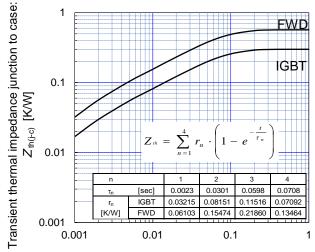












[Inverter]
Transient thermal resistance(max.)

Pulse width: t_w [sec]

IGBT Modules

Warnings

- 1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of 5/2019.

 The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.
- 2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
- 3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
- 4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
 - · Computers · OA equipment · Communications equipment (terminal devices) · Measurement equipment
 - · Machine tools · Audiovisual equipment · Electrical home appliances · Personal equipment · Industrial robots etc.
- 5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 - ·Transportation equipment (mounted on cars and ships) ·Trunk communications equipment
 - ·Traffic-signal control equipment ·Gas leakage detectors with an auto-shut-off feature
 - · Emergency equipment for responding to disasters and anti-burglary devices · Safety devices · Medical equipment
- 6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 - ·Space equipment ·Aeronautic equipment ·Nuclear control equipment ·Submarine repeater equipment
- 7. Copyright (c)1996-2019 by Fuji Electric Co., Ltd. All rights reserved.

 No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.
- 8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.

Technical Information

- Please refer to URLs below for futher information about products, application manuals and design support.
- ●关于本规格书中没有记载的产品信息,应用手册,技术信息等,请参考以下链接。
- ●本データシートに記載されていない製品情報,アプリケーションマニュアル,デザインサポートは以下のURLをご参照下さい。

FUJI ELECTRIC Power Semiconductor WEB site				
日本	www.fujielectric.co.jp/products/semiconductor/			
Global	www.fujielectric.com/products/semiconductor/			
中国	www.fujielectric.com.cn/products/semiconductor/			
Europe	www.fujielectric-europe.com/en/power_semiconductor/			
North America	www.americas.fujielectric.com/products/semiconductors/			

Information	
日本	
1 半導体総合カタログ	www.fujielectric.co.jp/products/semiconductor/catalog/
2 製品情報	www.fujielectric.co.jp/products/semiconductor/model/
3 アプリケーションマニュアル	www.fujielectric.co.jp/products/semiconductor/model/igbt/application/
4 デザインサポート	www.fujielectric.co.jp/products/semiconductor/model/igbt/technical/
5 マウンティングインストラクション	www.fujielectric.co.jp/products/semiconductor/model/igbt/mounting/
6 IGBT 損失シミュレーションソフト	www.fujielectric.co.jp/products/semiconductor/model/igbt/simulation/
7 富士電機技報	www.fujielectric.co.jp/products/semiconductor/journal/
8 製品のお問い合わせ	www.fujielectric.co.jp/products/semiconductor/contact/
9 改廃のお知らせ	www.fujielectric.co.jp/products/semiconductor/discontinued/

Global				
1 Semiconductors General Catalog	www.fujielectric.com/products/semiconductor/catalog/			
2 Product Information	www.fujielectric.com/products/semiconductor/model/			
3 Application Manuals	www.fujielectric.com/products/semiconductor/model/igbt/application/			
4 Design Support	www.fujielectric.com/products/semiconductor/model/igbt/technical/			
5 Mounting Instructions	www.fujielectric.com/products/semiconductor/model/igbt/mounting/			
6 IGBT Loss Simulation Software	www.fujielectric.com/products/semiconductor/model/igbt/simulation/			
7 Fuji Electric Journal	www.fujielectric.com/products/semiconductor/journal/			
8 Contact	www.fujielectric.com/contact/			
9 Revised and discontinued product information	www.fujielectric.com/products/semiconductor/discontinued/			

中国				
1 半导体综合目录	www.fujielectric.com.cn/products/semiconductor/catalog/			
2 产品信息	www.fujielectric.com.cn/products/semiconductor/model/			
3 应用手册	www.fujielectric.com.cn/products/semiconductor/model/igbt/application/			
4 技术信息	www.fujielectric.com.cn/products/semiconductor/model/igbt/technical/			
5 安装说明书	www.fujielectric.com.cn/products/semiconductor/model/igbt/mounting/			
6 IGBT 损耗模拟软件	www.fujielectric.com.cn/products/semiconductor/model/igbt/simulation/			
7 富士电机技报	www.fujielectric.com.cn/products/semiconductor/journal/			
8 产品咨询	www.fujielectric.com/contact/			
9 产品更改和停产信息	www.fujielectric.com.cn/products/semiconductor/discontinued/			