

Innovating Energy Technology

FUJI IGBT Simulator Ver. 6.2 User Manual

End-User Software License Agreement

(Caution) Before downloading and using the software, please read the following "End-user Software Agreement". By downloading the software, you agree to be bound by the terms of the following agreement. If you don't agree the agreement, remove the software and erase all copies of the software and the related documents.

End-User Software License Agreement

This is a software license agreement (the "Agreement") between you ("Customer") and Fuji Electric Co. Ltd. ("Fuji") with regard to the use of Fuji IGBT Simulator ("Software").

- (Right of Use) This software is available to use without paying additional fees to Fuji. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted.
- 2. (Copyright) Fuji retains the copyright, title and ownership of the software, the manual and related documents.
- 3. (Prohibitions) You may not reverse engineer, decompile, or disassemble this software.
- 4. (Limited Warranty) Fuji makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.

Fuji pays close attention to the quality of the contents on this simulator. However, such continents are provided "as is " without guarantees of any kinds.

5. (Program update) The program specification of this software is subject to change without any notice.

Contents

FO Fuji Electric

1. Software Setup	p.4
2. Menu	p.5
3. Module Selection	p.6
4. Set temperature condition	p.7
5. Single Mode Calculation	p.12
6. Parameter Sweep Calculation	p.20
7. Cycle Mode Calculation	p.23
8. Application circuit and PWM control	p.35

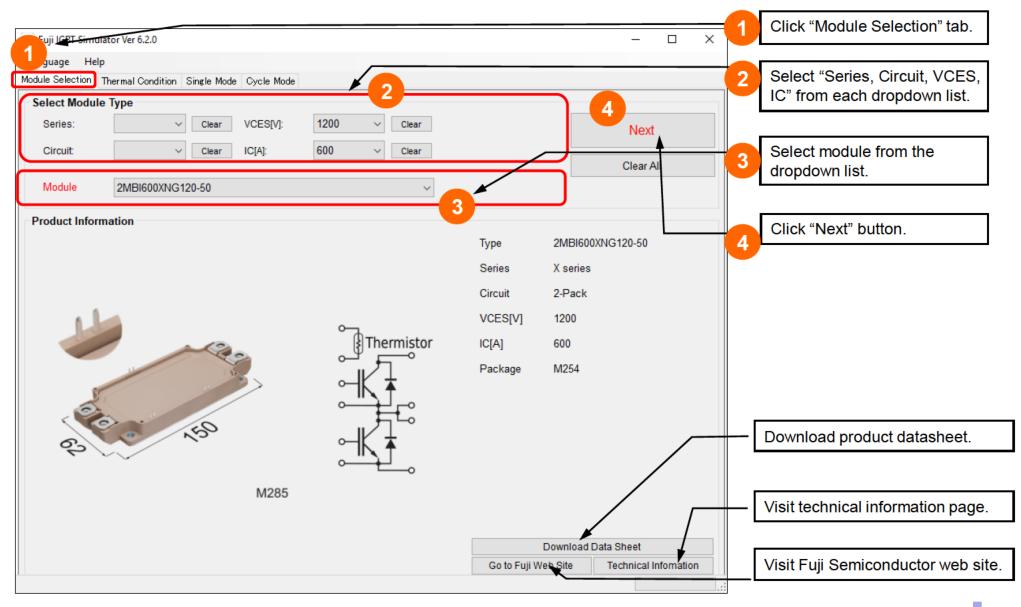
This software is suitable for Microsoft® Windows® Windows7, Windows & Windows10.

In order to operate, Microsoft .NET Framework 3.5 or later is required

Unzip the downloaded file and copy to a custom folder.

Please double-click the file "IGBTSim.exe" to start the simulator.

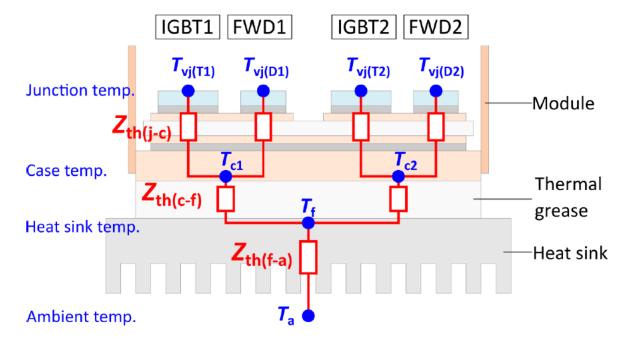
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.


Menu

🖻 Fuji IGST Simulator 2.0		– 🗆 X	Select language
Language Help 2			- English
Module Selection mermal Condition Single Mode Cycle Mode			-
Select Module Type			- Japanese
Series: VCES[V]: VCES[V]: Clear		Next	- Chinese
Circuit: V Clear IC[A]: V Clear			📧 Fuji IGBT Simulator Ver 6.
		Clear All	Language Help
Module			
Product Information			English mal Co Japanese mo
	Type -		Chinese
	Series -		Chinese
\backslash	Circuit -		
			<u> </u>
	VCES[V] -		2 Help
	IC[A] -		-
No Trancio	Package -		Visit Fuji Web site to get th latest version.
No Image			Check the version.
			3T Simulator Ver 6.2.0
			e Help
			e Help ∋c Visit WEB site
			Manual
		load Data Sheet	M
	Go to Fuji Web Sit	e Technical Infomation	

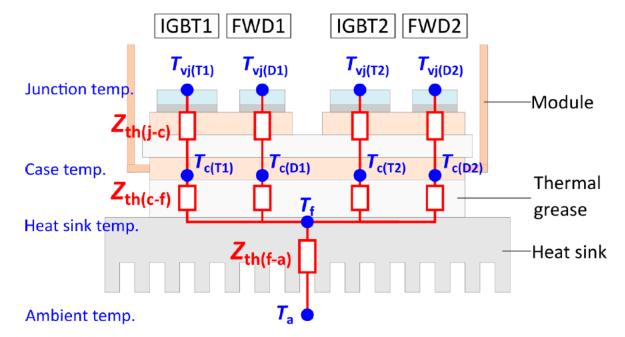
Module Selection

Input thermal condition (1)


Input thermal condition (2)

Thermal Circuit Model (1)

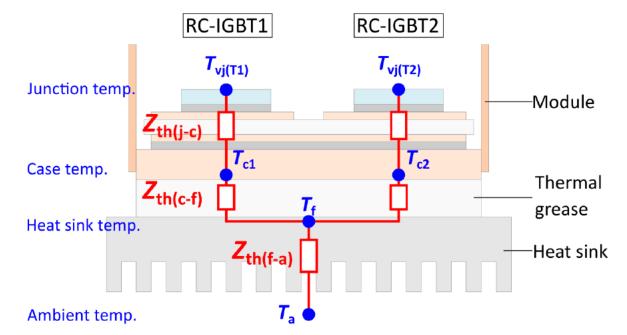
In the simulator, calculations are performed based on the following thermal circuit model.



The heat sink temperature T_f is calculated based on the assumption that the surface temperature distribution of the heat sink's area, which is in contact with the module, is uniform. If there is a deviation in the real temperature distribution, the calculated value might be different to the real one.

Thermal Circuit Model (2)

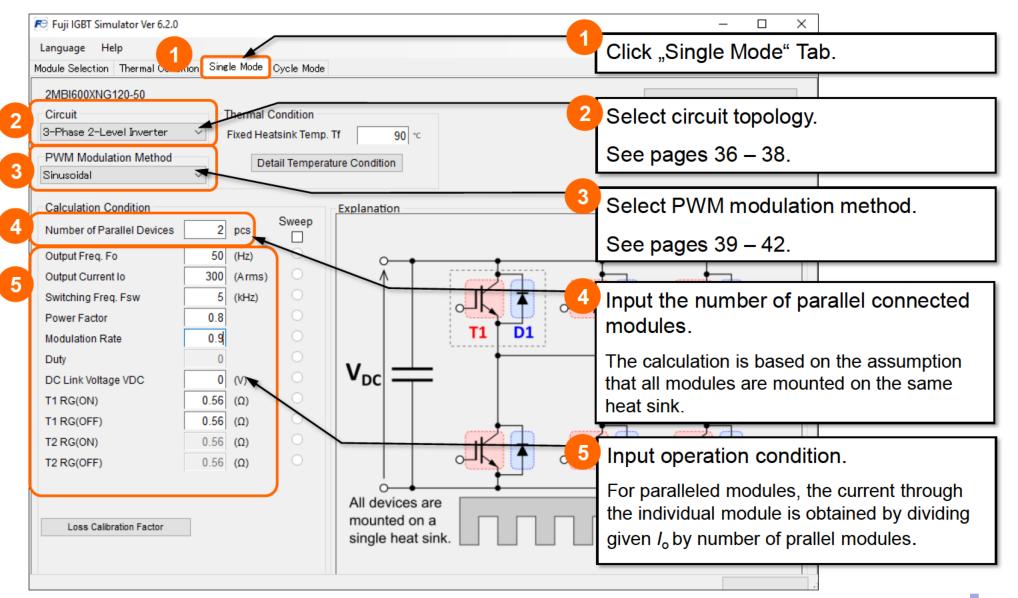
The following thermal circuit model is applied for modules without copper baseplate.



The heat sink temperature T_f is calculated based on the assumption that the surface temperature distribution of the heat sink's area, which is in contact with the module, is uniform. If there is a deviation in the real temperature distribution, the calculated value might be different to the real one.

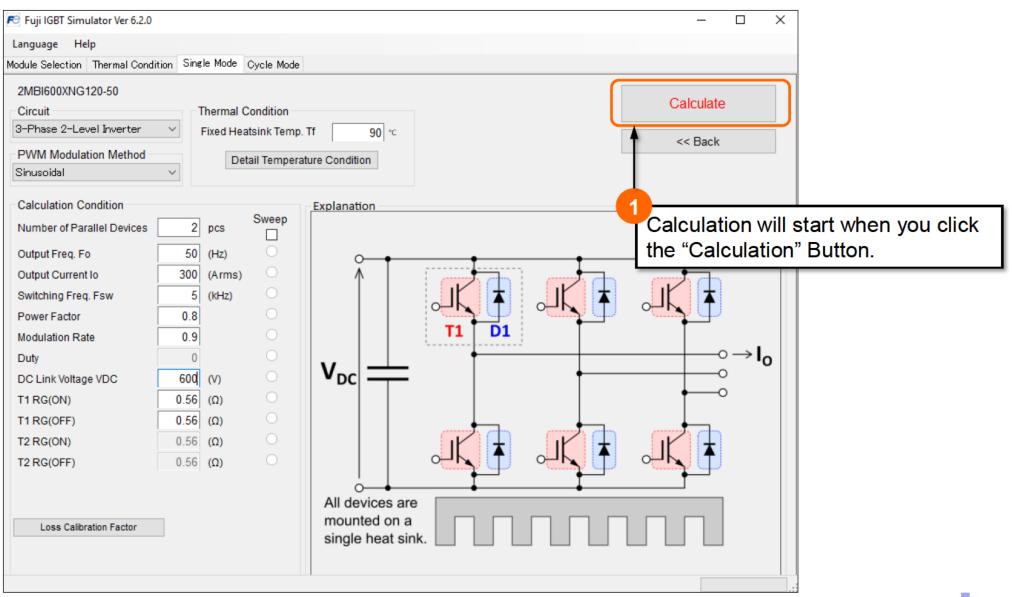
Thermal Circuit Model (3)

The following thermal circuit model is applied for RC-IGBT modules.

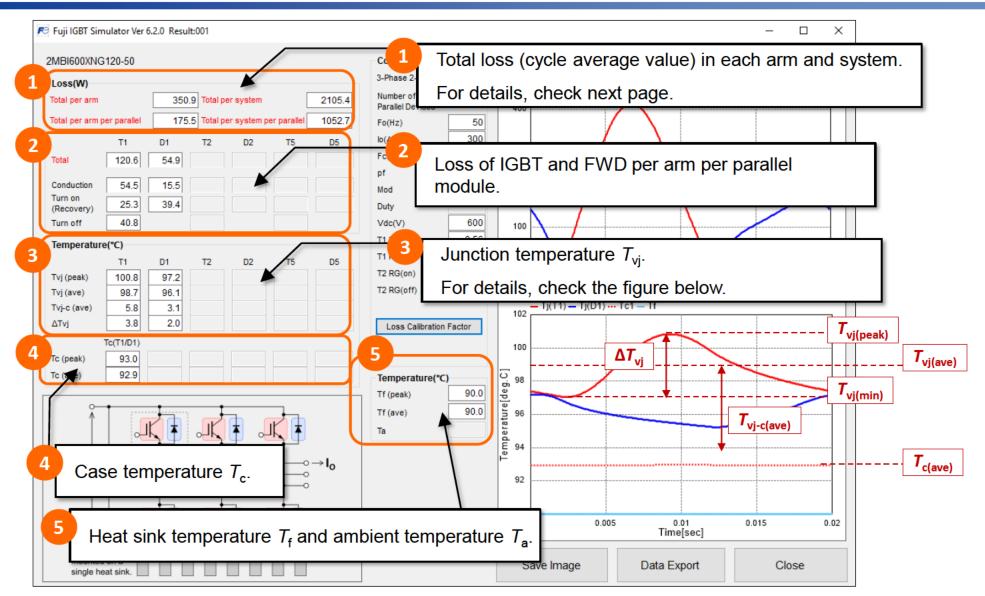

The heat sink temperature T_f is calculated based on the assumption that the surface temperature distribution of the heat sink's area, which is in contact with the module, is uniform. If there is a deviation in the real temperature distribution, the calculated value might be different to the real one.

Single Mode Calculation

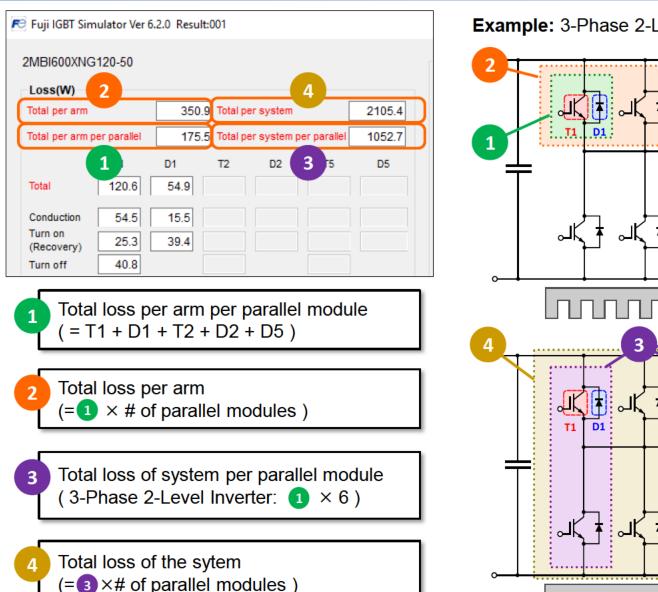
Input simulation condition (Single Mode)

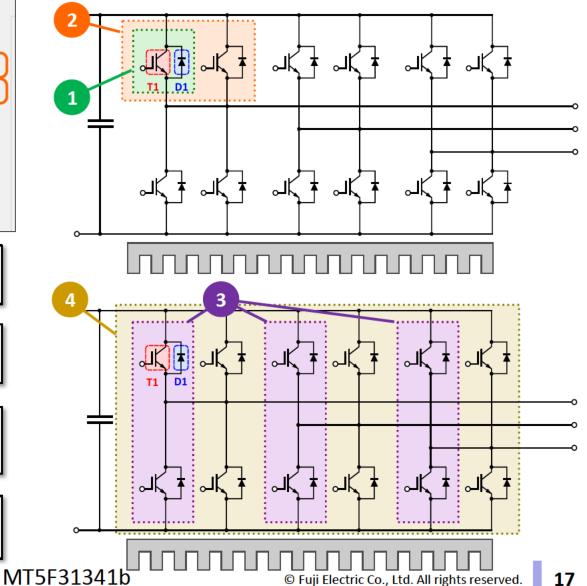


Loss Calibration Factor

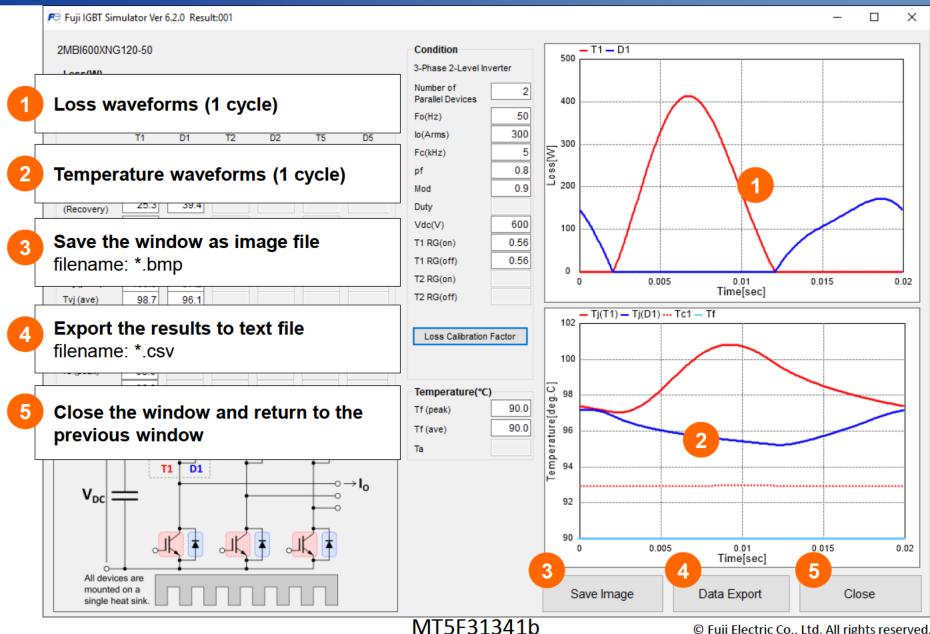

📧 Fuji IGBT Simulator Ver 6.2.0	- 🗆 X
Language Help	
Module Selection Thermal Condition Single Mode Cycle Mode	
2MBI600XNG120-50 Circuit Thermal Condition 3-Phase 2-Level Inverter Fixed Heatsink Temp. Tf 90 *c	Calculate
PWM Modulation Method Detail Temperature Condition	<< Back Loss Calibration Factor
Calculation Condition Number of Parallel Devices 2 pcs 3 weep 0 utput Freq. Fo 0 utput Freq. Fo 0 utput Current lo 3 00 (Arms) 5 (KHz) 9 over Factor Modulation Rate 0.9 0 CLink Voltage VDC 11 RG(ON) 11 RG(OFF) 12 RG(ON) T2 RG(OFF) T2 RG(OFF)	Close IGBT conduction loss * IGBT turn-on loss * IGBT turn-off loss * FWD conduction loss * FWD reverse recovery loss * IO0 *
Open. Loss Calibration Factor	Every generated loss by IGBT / FWD is multiplied with the provided calibration
single heat sink.	factor.

Run Calculation


Simulation Results (Single Mode)

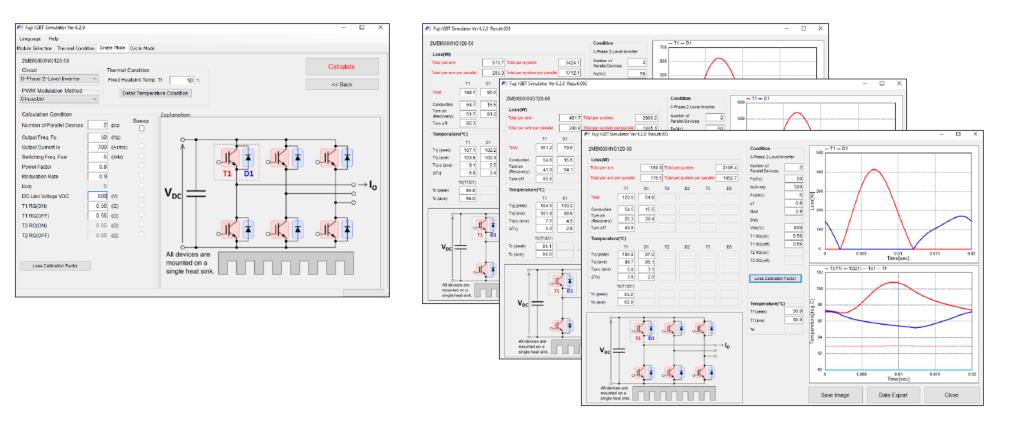


Simulation Results (Total Loss)



Example: 3-Phase 2-Level Inverter; 2 modules in parallel

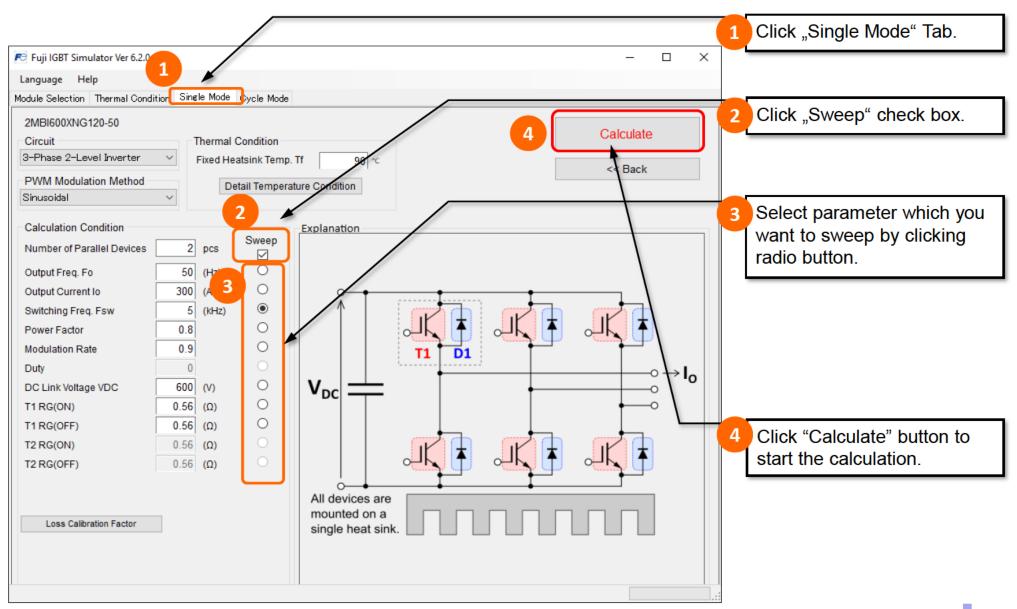
Simulation Results (Single Mode)


Display Multiple Results

Multiple windows of calculation result can be displayed at the same time (max. 40).

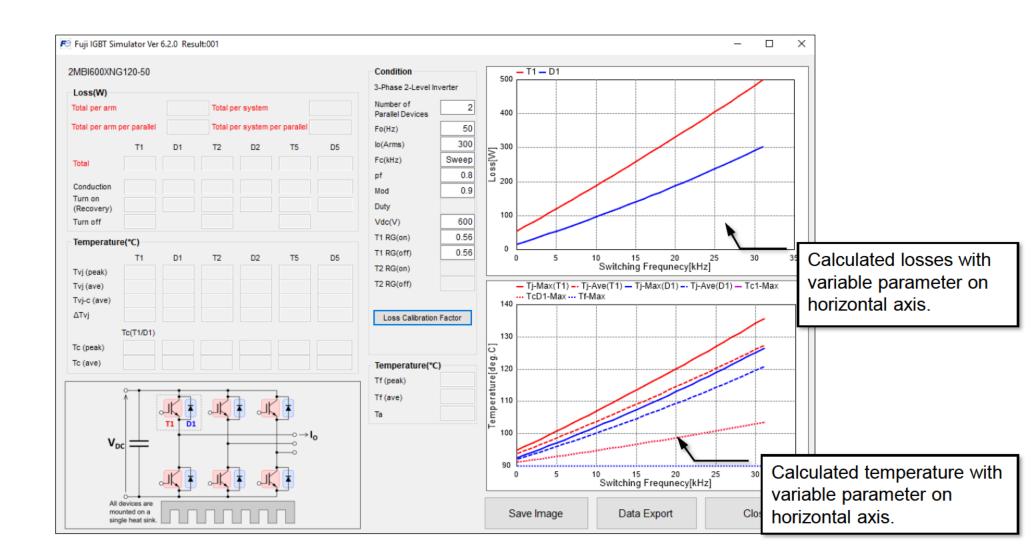
A new calculation result window is displayed each time the calculation execution button is pushed. The windows will be displayed in order Result001, Result002, ... continous numbering

Please use this function for comparative examination when changing the calculation conditions.

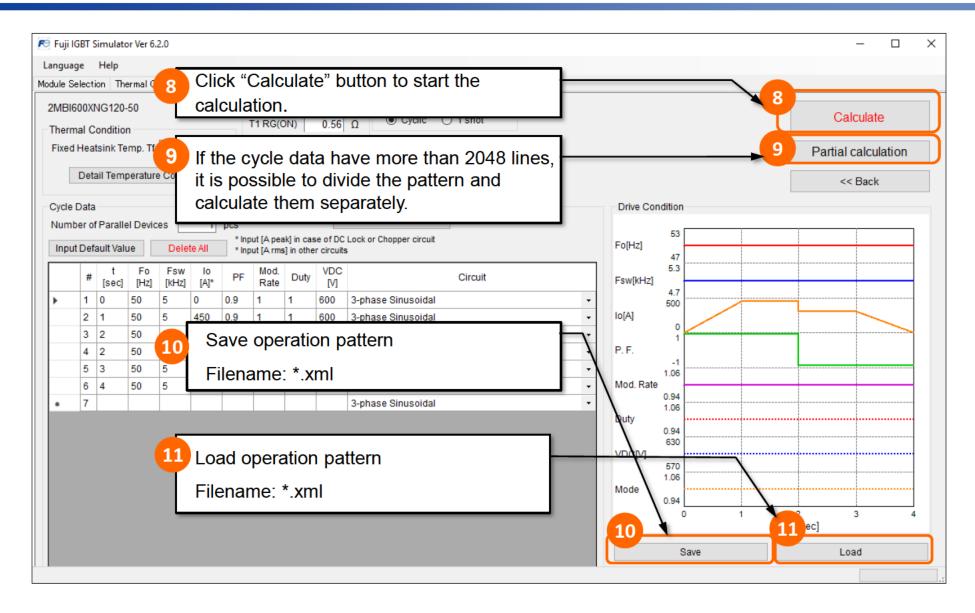

Parameter Sweep Calculation

In the parameter sweep calculation one of the simulation parameter is variable.

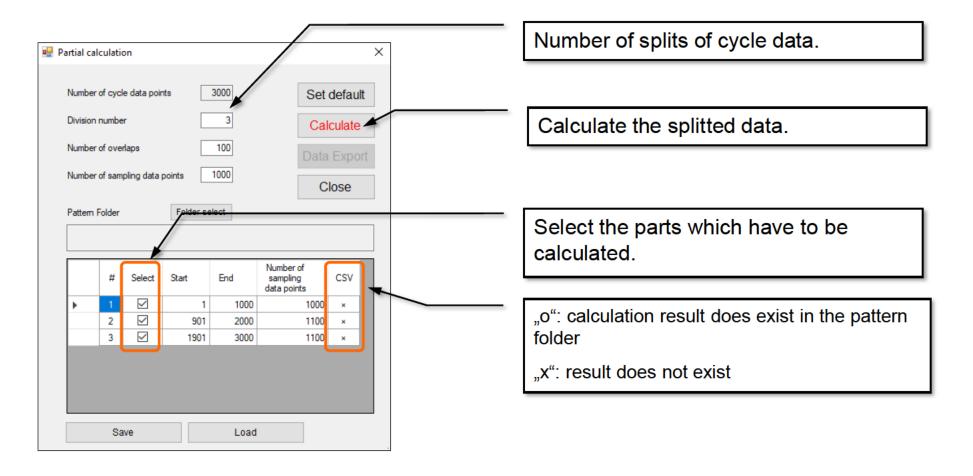
It is possible to calculate the change of losses and temperatures.

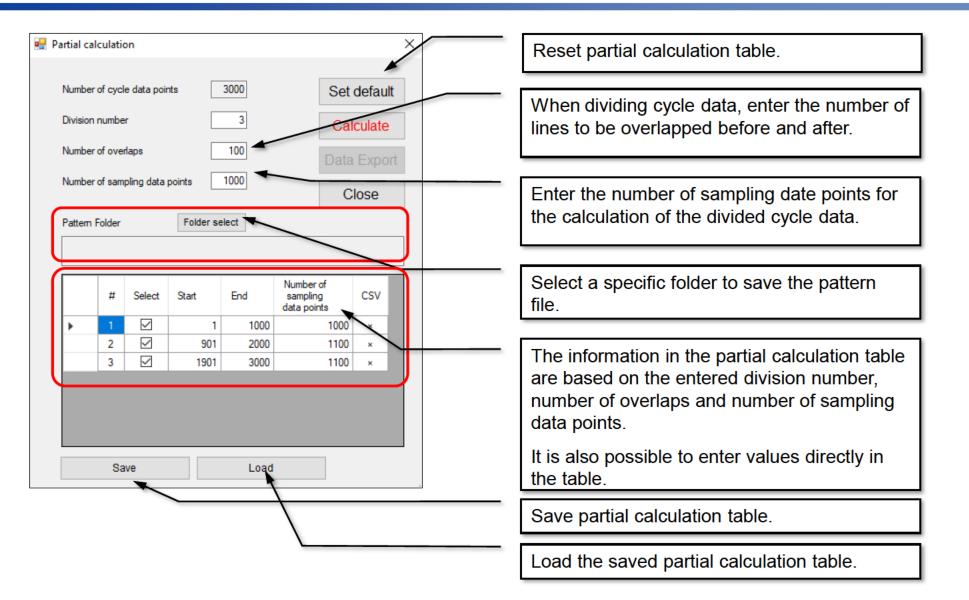

Parameter Sweep Calculation

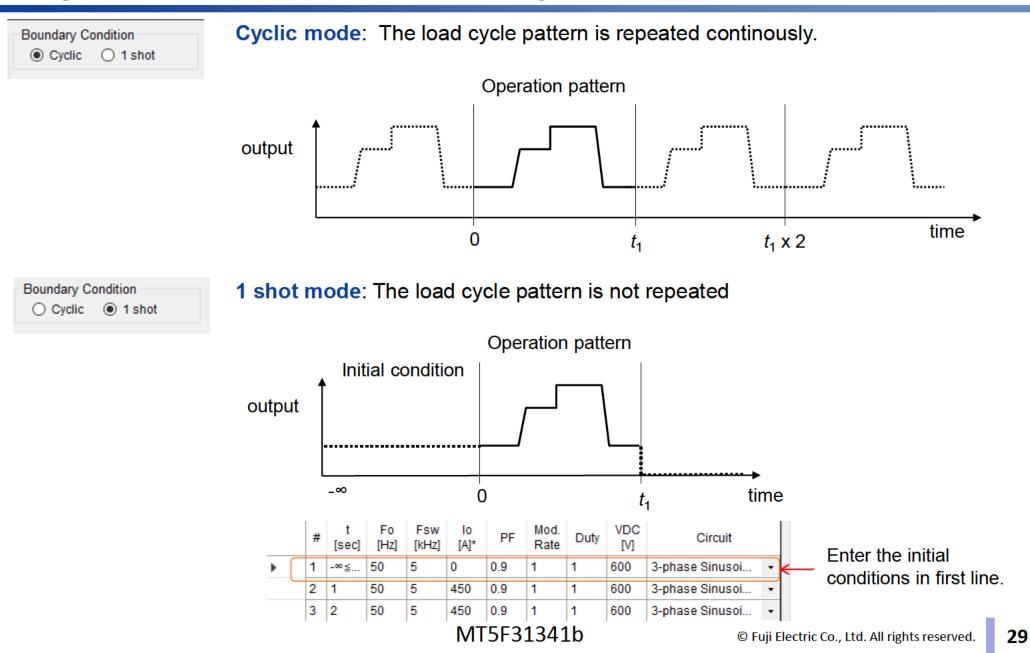
Parameter Sweep Calculation Result

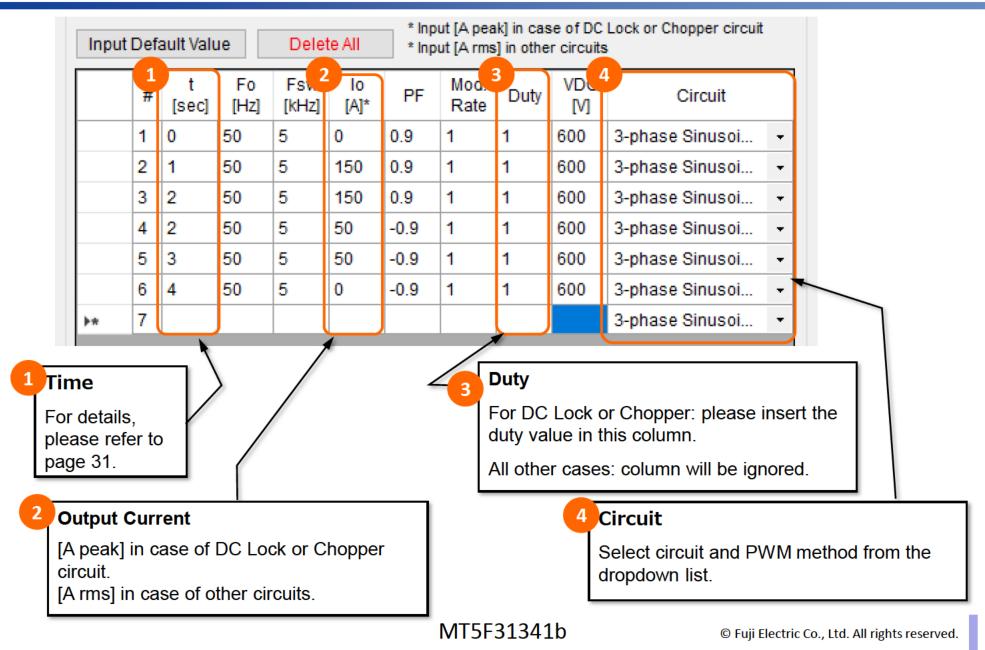


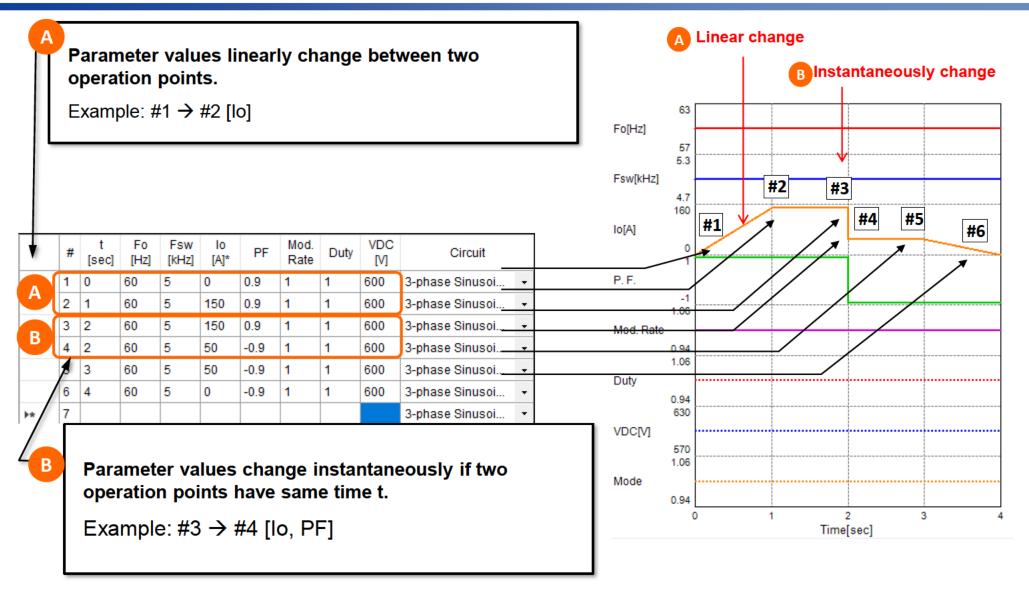
_												Click the "Cycle Mode" tab.
FC Fu	iji IG	BT Simulat	or Ver 6	.2.0								
		e Help					<u> </u>	_				
Module	e Sel	ection Th	iermal C	ondition	Single	e Mode	Cycle I	Mode				
2M	BI60	0XNG120	-50			(Gate Re	esistan	ce	Boundary Condition		Coloridate
The	erma	al Conditio	n				T1 RG(0	ON)	0.56	Ω O Cyclic O 1 shot		Calculate
Fix	ed⊦	leatsink T	emp. Tf	9	90 ℃	· ·	T1 RG(0	OFF)	0.56	Ω		Partial calculation
						· ·	T2 RG(0	ON)	0.56	Ω Sampling Number		T antal calculation
1		Detail Terr	peratur	e Condi	tion	J.	T2 RG(0	OFF)	0.56			<< Back
Cvo	le D	ata			-	\sim						
1		er of Paral	el Devid	es	1	pcs				Loss Calibration Factor	2	Llost sink temperature T: if T is fixed enter
In	nut I	Default Va		Dele	to All	* Inp				Lock or Chopper vircuit		Heat sink temperature T_{f} if T_{f} is fixed, enter
	puti	Delault va	ue	Dele	te All	* Inp	ut (A rms	s] in othe	r circuits			value.
		# t [sec]	Fo [Hz]	Fsw [kHz]	Io [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit		For changing detailed temperature condition,
►		1 0	50	5	0	0.9	1	1	600	3-phase Sinusoidal		please click the corresponding button. (For
		2 1	50	5	450	0.9	1	1	600	3-phase Sinusoidal		
		3 2	50	5	450	0.9	1	1	600	3-phase Sinusoidal		further instructions, please check pages 7-11.)
		4 2	50	5	300	-0.9	1	1	600	3-phase Sinusoidal		-1
		5 3	50	5	300	-0.9	1	1	600	3-phase Sinusoidal	4-3	
		6 4	50	5	0	-0.9	1	1	600	3-phase Sinusoidal		Input gate resistance value.
•		7								3-phase Sinusoidal		106
											4	Select boundary conditions
												For details, please refer to page 29.
												1.06 Mode
												0.94
												0 1 2 3 4 Time[sec]
												Save Load


odule		tion	Therm	il Condit	on Sir	gle M		_/	esistar	100	Boundary Condition	Number of parallel connected modules.	on
			120-50					RG	_	0.56		the same heat sink.	
	ermal							1 RG((0.56			1
FIX	ed He	atsır	k Temp	. 11	90	° /		2 RG((0.56	0	Partial calculation	
	D	etail 1	empera	ture Co	ndition	/		2 RG((0.56	Sampling Number	Click "Loss Calibration Coefficient" button	to
Cvc	le Da	ta			*		_					enter calibration coefficients for each loss	
Nu	mber	of Pa	rallel D	evices		1 pc	cs			6	Loss Calibration Factor	calculation.	
In	put D	efaul	Value	D	elete All					se of DC er circuit	Lock or Chopper circuit s	FO[HZ]	
	;	# [s		o Fs Iz] [kH			PF	Mod. Rate	Duty	VDC [V]	Circuit	47 5.3 Fsw[kHz]	
►	1	0	50	5	0	_).9	1	1	600	3-phase Sinusoidal	4.7 500	
	2	1	50	5	450	0.). <mark>9</mark>	1	1	600	3-phase Sinusoidal	• Io[A]	
	3	2	50	5	450	0.).9	1	1	600	3-phase Sinusoidal		
	4		50	5	300		0.9	1	1	600	3-phase Sinusoidal	• P.F.	
	5	-	50	5	300	-	0.9	1	×	600	3-phase Sinusoidal	1.06	
	6		50	5	0	-0	0.9	1	1	600	3-phase Sinusoidal	• Mod. Rate 0.94	
*	7										3-phase Sinusoidal	1.06 Duty	
											\mathbf{i}	0.94	
												630 VDC[V]	
												570	
												7 Input operation pattern.	
												For details, please refer to page 30 et seq.	
												Save Load	


Partial Calculation


Partial Calculation


Cycle Mode Calculation Boundary Condition


Set Load Cycle

Set Load Cycle

For Fuji Electric

Set Load Cycle

Copy & Paste cell(s) value

Select a cell or range of cell(s) \rightarrow Right click \rightarrow Copy

	#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit
•	1	0	60	5	0	0.9	Conv			3-phase Sinusoidal
	2	1	60	5	150	0.9	Copy Cut			3-phase Sinusoidal
	3	2	60	5	150	0.9	Paste			3-phase Sinusoidal
	4	2	60	5	50	-0.9	Insert		3-phase Sinusoidal	
	5	3	60	5	50	-0.9	Insert x100			3-phase Sinusoidal
	6	4	60	5	0	-0.9	Clear	x 100		3-phase Sinusoidal
	7									3-phase Sinusoidal
							Delete			

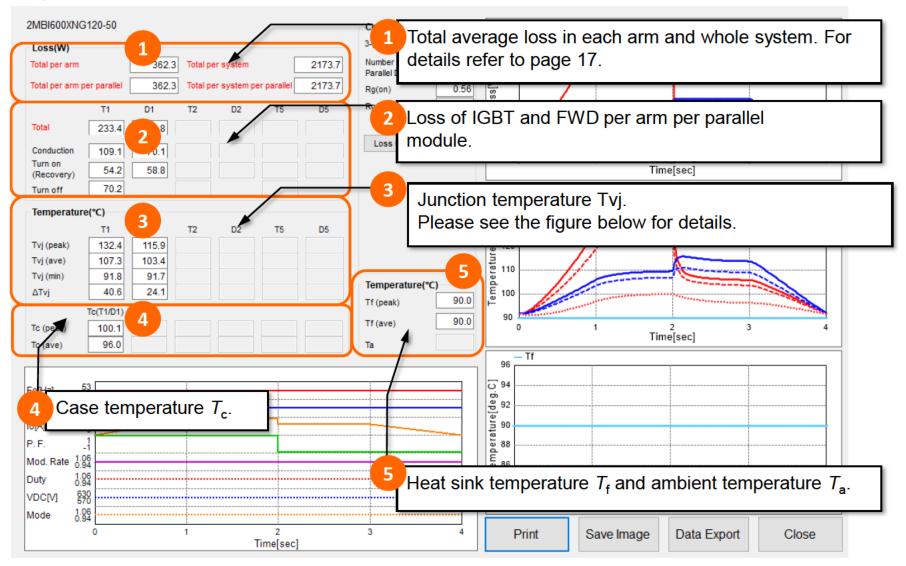
$\mathsf{Select}\ \mathsf{cell}(\mathsf{s}) \not \rightarrow \mathsf{Right}\ \mathsf{click} \not \rightarrow \mathsf{Paste}$

	#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit	
	1	0	60	5	0	0.9	1	1	600	3-phase Sinusoidal	-
	2	1	60	5	150	0.9	1	1	600	3-phase Sinusoidal	-
	3	2	60	5	150	0.9	1	1	600	3-phase Sinusoidal	•
•	4	2	60	5	50	-0.9		4		3-phase Sinusoidal	•
	5	3	60	5	50	-0.9	Copy Cut		0	3-phase Sinusoidal	•
	6	4	60	5	0	-0.9			0	3-phase Sinusoidal	-
•	7						Paste nsert		-13-	3-phase Sinusoidal	•
							nsert x'	100			
							Clear				

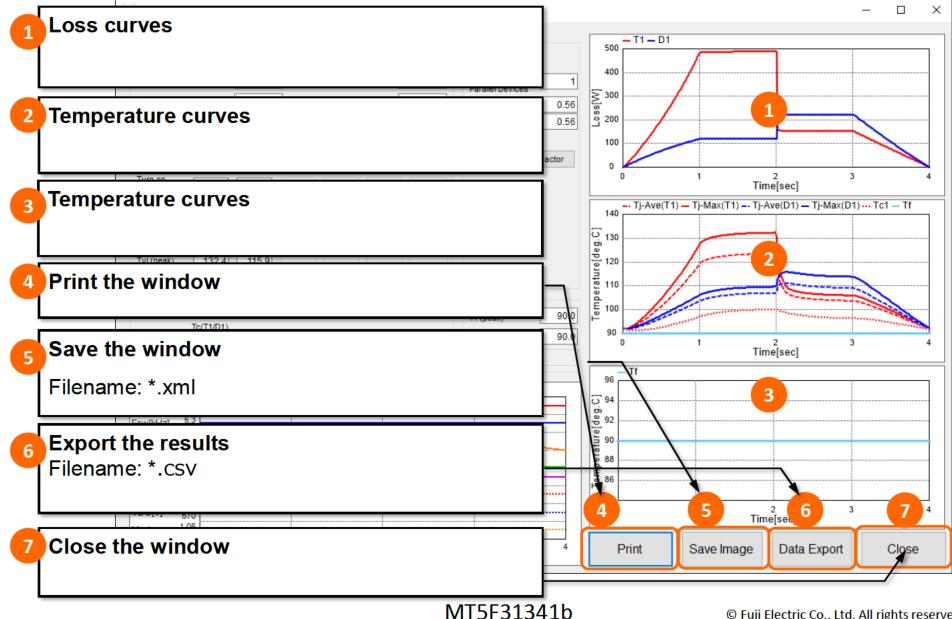
Select a line \rightarrow Right click \rightarrow Paste

		#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit	
		1	0	60	5	0	0.9	1	1	600	3-phase Sinusoidal	•
		2	1	60	5	150	0.9	1	1	600	3-phase Sinusoidal	·
		3	2	60	5	150	0.9	1	1	600	3-phase Sinusoidal	-
		4	2	60	5	50	-0.9	1	1	600	3-phase Sinusoidal	-
		5	3	60	5	50	-0.9	1	1	600	3-phase Sinusoidal	-
		6	4	60	5	0	-0.9	1	1	600	3-phase Sinusoidal	•
Þ	PP 7										3-phase Sinusoidal	•
	Co	ру		- 1								
	Cu	t		- 8								
	Pa	ște										
	Ins											
	Ins	ert	x100	- 1								
	Cle	ar		- 1								
	De	lete		- 1								

Copy & Paste line

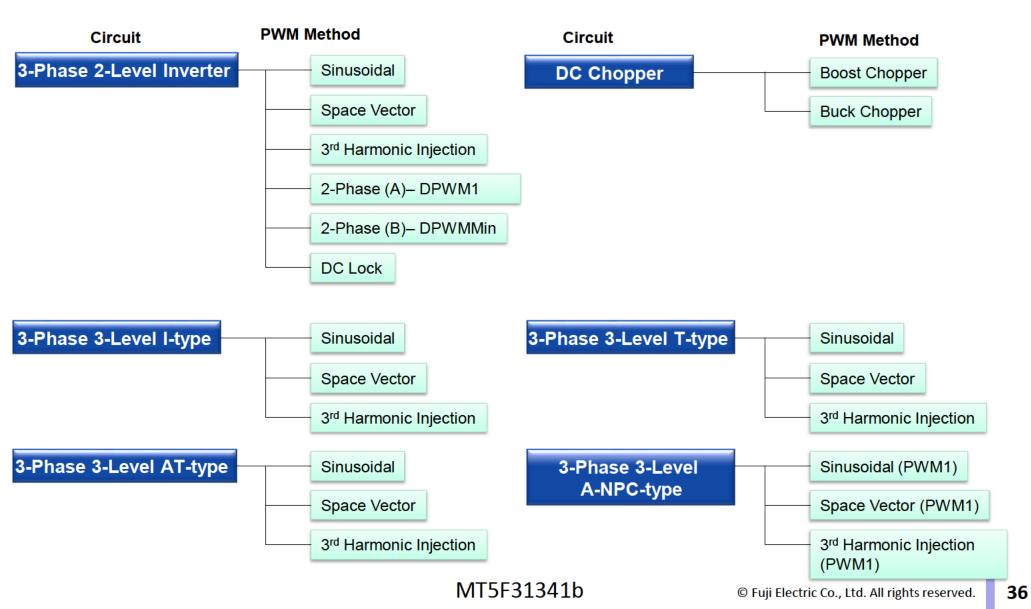

Select a line (click 1st column) \rightarrow Right click \rightarrow Copy

#	# [t sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit	
			60	5	0	0.9	1	1	600	3-phase Sinusoidal	•
	Copy				150	0.9	1	1	600	3-phase Sinusoidal	•
Cut				5	150	0.9	1	1	600	3-phase Sinusoidal	-
Past			[5	50	-0.9	1	1	600	3-phase Sinusoidal	•
Inse		100	[5	50	-0.9	1	1	600	3-phase Sinusoidal	-
	Insert x100				0	-0.9	1	1	600	3-phase Sinusoidal	-
	Clear									3-phase Sinusoidal	•
Dele	ete										


Regi light Simulator Ver 6.2.0 Result:003

– 🗆 🗙

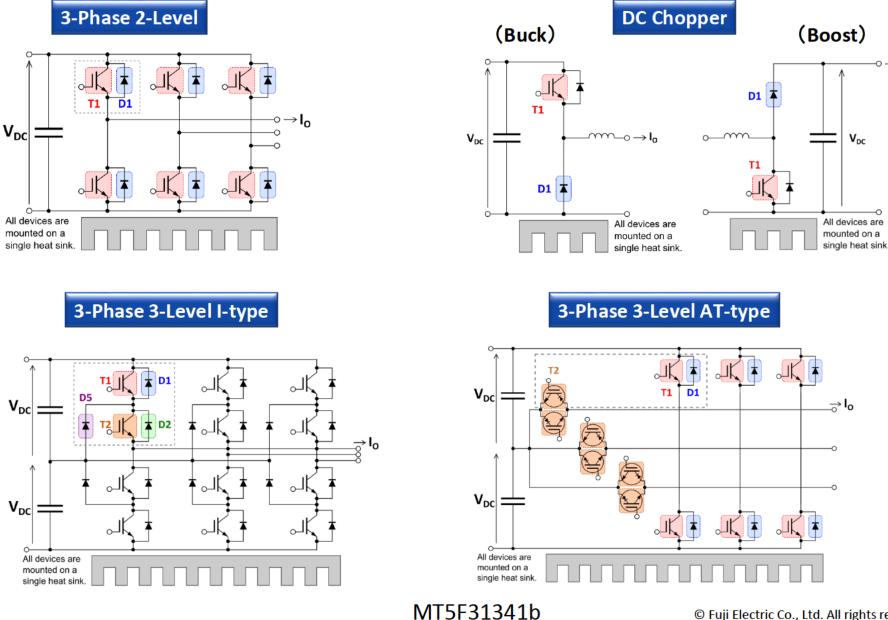
Simulation Results (Cycle Calculation)



Circuits & PWM Methods

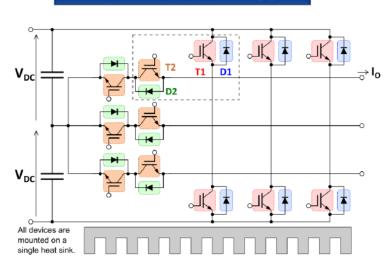
Circuits & Modulation Methods

This page shows a list of circuits and PWM methods that are supported by the simulator.

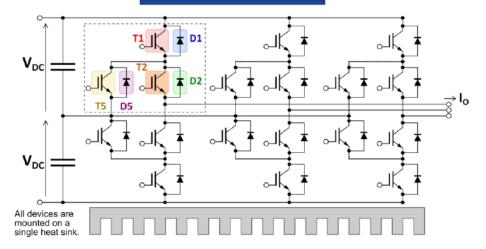


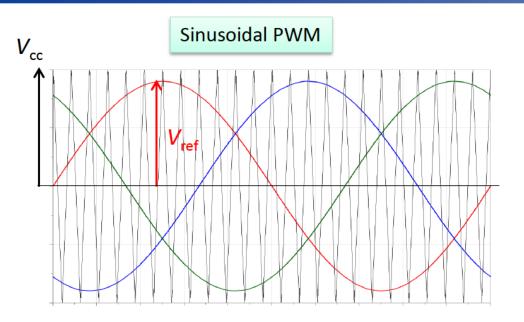
Circuit Topology

Ferric Fuji Electric Innovating Energy Technology


 $- \rightarrow I_0$

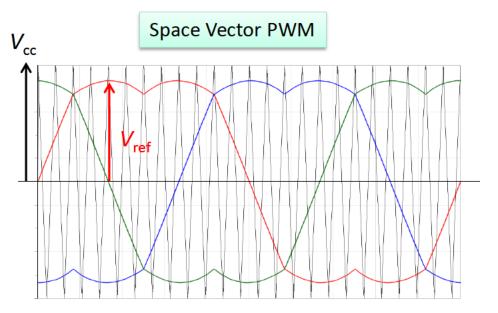
-0


Circuit: 3-Phase 3-Level type


3-Phase 3-Level T-type

3-Phase 3-Level A-NPC-type

PWM Method (SPWM, SVPWM)

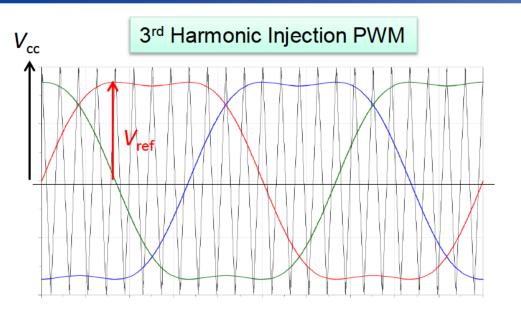


The reference voltage is a sinusoidal waveform.

The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio *m*.

$$V_{\rm ref} = mV_{\rm dc}$$

The maximum value of *m* is 1.


The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio m

$$V_{\rm ref} = \frac{\sqrt{3}}{2}mV_{\rm dc}$$

m is defined to be the same output voltage to the sinusoidal PWM.

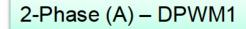
The maximum value of *m* is $2/\sqrt{3} = 1.1547$

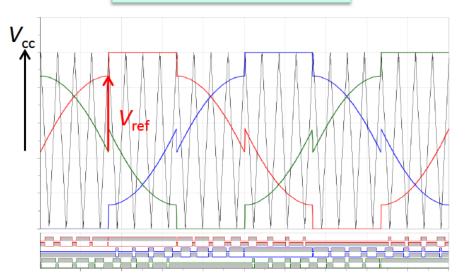
PWM Method (3rd harmonic injection)

The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio m

$$V_{\rm ref} = \frac{\sqrt{3}}{2} m V_{\rm dc}$$

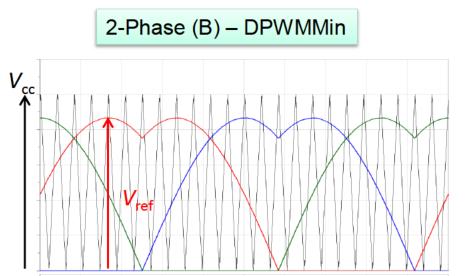
m is defined to be the same output voltage to the sinusoidal PWM.


The maximum value of *m* is $2/\sqrt{3} = 1.1547$


Fuji Electric

Innovating Energy Technology

2-Phase Modulation



The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio *m*.

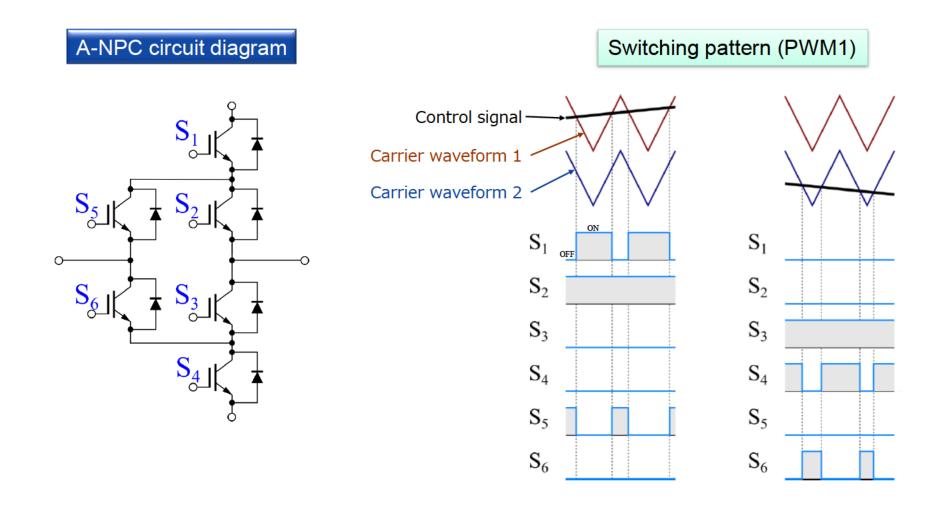
$$V_{\rm ref} = \frac{\sqrt{3}}{2}mV_{\rm dc}$$

m is defined to be the same output voltage to the sinusoidal PWM.

The maximum value of *m* is $2/\sqrt{3} = 1.1547$

The amplitude of the reference voltage Vref is defined by the following equation using modulation ratio *m*.

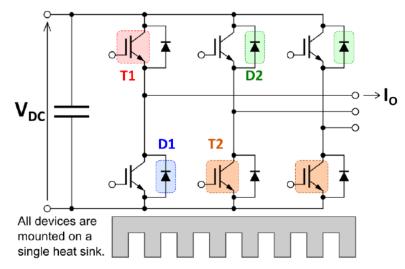
$$V_{\rm ref} = \frac{\sqrt{3}}{2}mV_{\rm dc}$$

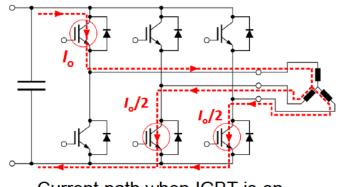

m is defined to be the same output voltage to the sinusoidal PWM.

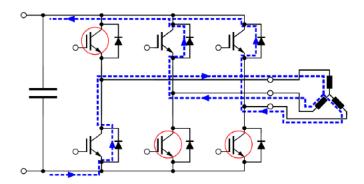
The maximum value of *m* is $2/\sqrt{3} = 1.1547$

PWM Method (A-NPC circuit)

Several methods have been proposed for the PWM method of the A-NPC circuit. This simulator performs simulation with the PWM method (PWM 1) shown below.




Motor DC Lock Operation


Calculate the IGBT / FWD loss when locking the motor rotation with a servo drive or the like.

As shown in the figure below, one IGBT of the upper arm (or the lower arm) of one phase and the IGBT of the other arm of the other two phases are switching controlled.

Current path when IGBT is on.

Current path when IGBT is off.

Note: The heat sink temperature T_f is calculated based on the assumption that the surface temperature distribution of the heat sink's area, which is in contact with the module, is uniform.

In the motor lock operation only specific elements generate heat. Thus the heat does not spread optimally on the heat sink's surface and the heat sink's thermal resistance increases. As a result, Tf and Tc might become high.

If you have any questions, please contact us.

http://www.fujielectric.com/products/semiconductor/contact/index.html

